Skip to main content

Strong pseudoprime









Strong pseudoprime


From Wikipedia, the free encyclopedia

Jump to navigation
Jump to search


In number theory, a probable prime is a number that passes a primality test.
A strong probable prime is a number that passes a strong version of a primality test.
A strong pseudoprime is a composite number that passes a strong version of a primality test.
All primes pass these tests, but a small fraction of composites also pass, making them "false primes".


Unlike the Fermat pseudoprimes, for which there exist numbers that are pseudoprimes to all coprime bases (the Carmichael numbers), there are no composites that are strong pseudoprimes to all bases.




Contents






  • 1 Formal definition


  • 2 Properties of strong pseudoprimes


  • 3 Examples


  • 4 Smallest strong pseudoprime to base n


  • 5 References





Formal definition[edit]


An odd composite number n = d · 2s + 1 where d is odd is called a strong (Fermat) pseudoprime to base a when one of the following conditions holds:


ad≡1(modn){displaystyle a^{d}equiv 1{pmod {n}}}{displaystyle a^{d}equiv 1{pmod {n}}}

or


ad⋅2r≡1(modn) for some 0≤r<s.{displaystyle a^{dcdot 2^{r}}equiv -1{pmod {n}}quad {mbox{ for some }}0leq r<s.}{displaystyle a^{dcdot 2^{r}}equiv -1{pmod {n}}quad {mbox{ for some }}0leq r<s.}

(If a number n satisfies one of the above conditions and we don't yet know whether it is prime, it is more precise to refer to it as a strong probable prime to base a. But if we know that n is not prime, then one may use the term strong pseudoprime.)


The definition is trivially met if a ≡ ±1 (mod n) so these trivial bases are often excluded.


Guy mistakenly gives a definition with only the first condition, which is not satisfied by all primes.[1]



Properties of strong pseudoprimes[edit]


A strong pseudoprime to base a is always an Euler–Jacobi pseudoprime, an Euler pseudoprime [2] and a Fermat pseudoprime to that base, but not all Euler and Fermat pseudoprimes are strong pseudoprimes. Carmichael numbers may be strong pseudoprimes to some bases—for example, 561 is a strong pseudoprime to base 50—but not to all bases.


A composite number n is a strong pseudoprime to at most one quarter of all bases below n;[3][4] thus, there are no "strong Carmichael numbers", numbers that are strong pseudoprimes to all bases. Thus given a random base, the probability that a number is a strong pseudoprime to that base is less than 1/4, forming the basis of the widely used Miller–Rabin primality test.
However, Arnault
[5]
gives a 397-digit composite number that is a strong pseudoprime to every base less than 307.
One way to prevent such a number from wrongfully being declared probably prime is to combine a strong probable prime test with a Lucas probable prime test, as in the Baillie–PSW primality test.


There are infinitely many strong pseudoprimes to any base.[2]



Examples[edit]


The first strong pseudoprimes to base 2 are


2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141, 52633, 65281, 74665, 80581, 85489, 88357, 90751, ... (sequence A001262 in the OEIS).

The first to base 3 are


121, 703, 1891, 3281, 8401, 8911, 10585, 12403, 16531, 18721, 19345, 23521, 31621, 44287, 47197, 55969, 63139, 74593, 79003, 82513, 87913, 88573, 97567, ... (sequence A020229 in the OEIS).

The first to base 5 are


781, 1541, 5461, 5611, 7813, 13021, 14981, 15751, 24211, 25351, 29539, 38081, 40501, 44801, 53971, 79381, ... (sequence A020231 in the OEIS).

For base 4, see OEIS: A020230, and for base 6 to 100, see OEIS: A020232 to OEIS: A020326.
By testing the above conditions to several bases, one gets somewhat more powerful primality tests than by using one base alone.
For example, there are only 13 numbers less than 25·109 that are strong pseudoprimes to bases 2, 3, and 5 simultaneously.
They are listed in Table 7 of.[2] The smallest such number is 25326001.
This means that, if n is less than 25326001 and n is a strong probable prime to bases 2, 3, and 5, then n is prime.


Carrying this further, 3825123056546413051 is the smallest number that is a strong pseudoprime to the 9 bases 2, 3, 5, 7, 11, 13, 17, 19, and 23.[6][7]
So, if n is less than 3825123056546413051 and n is a strong probable prime to these 9 bases, then n is prime.


By judicious choice of bases that are not necessarily prime, even better tests can be constructed. For example, there is no composite <264{displaystyle <2^{64}}{displaystyle <2^{64}} that is a strong pseudoprime to all of the seven bases 2, 325, 9375, 28178, 450775, 9780504, and 1795265022.[8]



Smallest strong pseudoprime to base n[edit]














































































































































































































































































































































n
Least SPSP

n
Least SPSP

n
Least SPSP

n
Least SPSP
1
9
33
545
65
33
97
49
2
2047
34
33
66
65
98
9
3
121
35
9
67
33
99
25
4
341
36
35
68
25
100
9
5
781
37
9
69
35
101
25
6
217
38
39
70
69
102
133
7
25
39
133
71
9
103
51
8
9
40
39
72
85
104
15
9
91
41
21
73
9
105
451
10
9
42
451
74
15
106
15
11
133
43
21
75
91
107
9
12
91
44
9
76
15
108
91
13
85
45
481
77
39
109
9
14
15
46
9
78
77
110
111
15
1687
47
65
79
39
111
55
16
15
48
49
80
9
112
65
17
9
49
25
81
91
113
57
18
25
50
49
82
9
114
115
19
9
51
25
83
21
115
57
20
21
52
51
84
85
116
9
21
221
53
9
85
21
117
49
22
21
54
55
86
85
118
9
23
169
55
9
87
247
119
15
24
25
56
55
88
87
120
91
25
217
57
25
89
9
121
15
26
9
58
57
90
91
122
65
27
121
59
15
91
9
123
85
28
9
60
481
92
91
124
25
29
15
61
15
93
25
125
9
30
49
62
9
94
93
126
25
31
15
63
529
95
1891
127
9
32
25
64
9
96
95
128
49


References[edit]





  1. ^ Guy, Pseudoprimes. Euler Pseudoprimes. Strong Pseudoprimes. §A12 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 27-30, 1994.


  2. ^ abc Carl Pomerance; John L. Selfridge; Samuel S. Wagstaff, Jr. (July 1980). "The pseudoprimes to 25·109" (PDF). Mathematics of Computation. 35 (151): 1003–1026. doi:10.1090/S0025-5718-1980-0572872-7..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  3. ^
    Louis Monier (1980). "Evaluation and Comparison of Two Efficient Probabilistic Primality Testing Algorithms". Theoretical Computer Science. 12: 97–108. doi:10.1016/0304-3975(80)90007-9.



  4. ^ Rabin, Probabilistic Algorithm for Testing Primality. Journal of Number Theory, 12 pp. 128-138, 1980.


  5. ^ F. Arnault (August 1995). "Constructing Carmichael Numbers Which Are Strong Pseudoprimes to Several Bases". Journal of Symbolic Computation. 20 (2): 151–161. doi:10.1006/jsco.1995.1042.


  6. ^
    Zhenxiang Zhang; Min Tang (2003). "Finding Strong Pseudoprimes to Several Bases. II". Mathematics of Computation. 72 (244): 2085–2097. doi:10.1090/S0025-5718-03-01545-X.



  7. ^
    Jiang, Yupeng; Deng, Yingpu (2012). "Strong pseudoprimes to the first 9 prime bases". arXiv:1207.0063v1 [math.NT].



  8. ^ "SPRP Records". Retrieved 3 June 2015.












Retrieved from "https://en.wikipedia.org/w/index.php?title=Strong_pseudoprime&oldid=865771015"





Navigation menu

























(window.RLQ=window.RLQ||).push(function(){mw.config.set({"wgPageParseReport":{"limitreport":{"cputime":"0.316","walltime":"0.436","ppvisitednodes":{"value":776,"limit":1000000},"ppgeneratednodes":{"value":0,"limit":1500000},"postexpandincludesize":{"value":88916,"limit":2097152},"templateargumentsize":{"value":571,"limit":2097152},"expansiondepth":{"value":7,"limit":40},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":17338,"limit":5000000},"entityaccesscount":{"value":2,"limit":400},"timingprofile":["100.00% 262.209 1 -total"," 72.73% 190.706 1 Template:Reflist"," 55.08% 144.427 4 Template:Cite_journal"," 24.13% 63.279 7 Template:Navbox"," 17.78% 46.623 1 Template:Classes_of_natural_numbers"," 6.19% 16.242 1 Template:Cite_arXiv"," 3.57% 9.358 1 Template:Icon"," 2.70% 7.069 1 Template:Cite_web"," 2.46% 6.453 3 Template:OEIS"," 2.10% 5.501 3 Template:Oeis"]},"scribunto":{"limitreport-timeusage":{"value":"0.145","limit":"10.000"},"limitreport-memusage":{"value":3523083,"limit":52428800}},"cachereport":{"origin":"mw1319","timestamp":"20181125225922","ttl":1900800,"transientcontent":false}}});mw.config.set({"wgBackendResponseTime":84,"wgHostname":"mw1262"});});

Popular posts from this blog

Florida Star v. B. J. F.

Danny Elfman

Lugert, Oklahoma