Skip to main content

Icosahedral number









Icosahedral number


From Wikipedia, the free encyclopedia

Jump to navigation
Jump to search


An icosahedral number is a figurate number that represents an icosahedron. The nth icosahedral number is given by the formula


n(5n2−5n+2)2{displaystyle {n(5n^{2}-5n+2) over 2}}{displaystyle {n(5n^{2}-5n+2) over 2}}

The first such numbers are 1, 12, 48, 124, 255, 456, 742, 1128, 1629, 2260, 3036, 3972, 5083, … (sequence A006564 in the OEIS).



References[edit]


Kim, Hyun Kwang, On Regular Polytope Numbers (PDF), archived from the original (PDF) on 2010-03-07.mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}













Retrieved from "https://en.wikipedia.org/w/index.php?title=Icosahedral_number&oldid=739429822"





Navigation menu

























(window.RLQ=window.RLQ||).push(function(){mw.config.set({"wgPageParseReport":{"limitreport":{"cputime":"0.216","walltime":"0.279","ppvisitednodes":{"value":371,"limit":1000000},"ppgeneratednodes":{"value":0,"limit":1500000},"postexpandincludesize":{"value":81917,"limit":2097152},"templateargumentsize":{"value":38,"limit":2097152},"expansiondepth":{"value":7,"limit":40},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":1585,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 178.340 1 -total"," 57.06% 101.769 1 Template:Citation"," 37.71% 67.255 7 Template:Navbox"," 29.27% 52.204 1 Template:Classes_of_natural_numbers"," 10.46% 18.654 1 Template:Num-stub"," 7.67% 13.679 1 Template:Asbox"," 6.61% 11.796 1 Template:Icon"," 3.01% 5.365 1 Template:OEIS"," 1.38% 2.457 1 Template:Nowrap"]},"scribunto":{"limitreport-timeusage":{"value":"0.092","limit":"10.000"},"limitreport-memusage":{"value":2599184,"limit":52428800}},"cachereport":{"origin":"mw1322","timestamp":"20181126031636","ttl":1900800,"transientcontent":false}}});});{"@context":"https://schema.org","@type":"Article","name":"Icosahedral number","url":"https://en.wikipedia.org/wiki/Icosahedral_number","sameAs":"http://www.wikidata.org/entity/Q13823786","mainEntity":"http://www.wikidata.org/entity/Q13823786","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png"}},"datePublished":"2013-05-30T16:30:03Z","dateModified":"2016-09-14T16:56:06Z","headline":"figurate number that represents an icosahedron"}(window.RLQ=window.RLQ||).push(function(){mw.config.set({"wgBackendResponseTime":110,"wgHostname":"mw1272"});});

Popular posts from this blog

Florida Star v. B. J. F.

Danny Elfman

Lugert, Oklahoma