Lobb number
Lobb number
Jump to navigation
Jump to search
In combinatorial mathematics, the Lobb number Lm,n counts the number of ways that n + m open parentheses and n − m close parentheses can be arranged to form the start of a valid sequence of balanced parentheses.[1]
Lobb numbers form a natural generalization of the Catalan numbers, which count the number of complete strings of balanced parentheses of a given length. Thus, the nth Catalan number equals the Lobb number L0,n.[2] They are named after Andrew Lobb, who used them to give a simple inductive proof of the formula for the nth Catalan number.[3]
The Lobb numbers are parameterized by two non-negative integers m and n with n ≥ m ≥ 0. The (m, n)th Lobb number Lm,n is given in terms of binomial coefficients by the formula
- Lm,n=2m+1m+n+1(2nm+n) for n≥m≥0.{displaystyle L_{m,n}={frac {2m+1}{m+n+1}}{binom {2n}{m+n}}qquad {text{ for }}ngeq mgeq 0.}
As well as counting sequences of parentheses, the Lobb numbers also count the number of ways in which n + m copies of the value +1 and n − m copies of the value −1 may be arranged into a sequence such that all of the partial sums of the sequence are non-negative.
References[edit]
^ Koshy, Thomas (March 2009). "Lobb's generalization of Catalan's parenthesization problem". The College Mathematics Journal. 40 (2): 99–107. doi:10.4169/193113409X469532..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
^ Koshy, Thomas (2008). Catalan Numbers with Applications. Oxford University Press. ISBN 978-0-19-533454-8.
^ Lobb, Andrew (March 1999). "Deriving the nth Catalan number". Mathematical Gazette. 83 (8): 109–110.
This mathematics-related article is a stub. You can help Wikipedia by expanding it. |
Categories:
- Integer sequences
- Factorial and binomial topics
- Enumerative combinatorics
- Mathematics stubs
(window.RLQ=window.RLQ||).push(function(){mw.config.set({"wgPageParseReport":{"limitreport":{"cputime":"0.204","walltime":"0.292","ppvisitednodes":{"value":495,"limit":1000000},"ppgeneratednodes":{"value":0,"limit":1500000},"postexpandincludesize":{"value":83821,"limit":2097152},"templateargumentsize":{"value":75,"limit":2097152},"expansiondepth":{"value":7,"limit":40},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":7507,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 180.746 1 -total"," 66.16% 119.575 1 Template:Reflist"," 53.95% 97.508 2 Template:Cite_journal"," 32.75% 59.194 7 Template:Navbox"," 26.45% 47.805 1 Template:Classes_of_natural_numbers"," 7.28% 13.161 1 Template:Math-stub"," 6.04% 10.917 1 Template:Asbox"," 5.48% 9.905 1 Template:Icon"," 3.77% 6.823 1 Template:Cite_book"," 1.51% 2.728 1 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.090","limit":"10.000"},"limitreport-memusage":{"value":2848268,"limit":52428800}},"cachereport":{"origin":"mw1254","timestamp":"20181125225219","ttl":1900800,"transientcontent":false}}});});{"@context":"https://schema.org","@type":"Article","name":"Lobb number","url":"https://en.wikipedia.org/wiki/Lobb_number","sameAs":"http://www.wikidata.org/entity/Q6663584","mainEntity":"http://www.wikidata.org/entity/Q6663584","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png"}},"datePublished":"2010-04-25T02:54:16Z","dateModified":"2018-02-13T03:29:47Z"}(window.RLQ=window.RLQ||).push(function(){mw.config.set({"wgBackendResponseTime":117,"wgHostname":"mw1320"});});