Skip to main content

Fortunate number









Fortunate number


From Wikipedia, the free encyclopedia

Jump to navigation
Jump to search






Question dropshade.png
Unsolved problem in mathematics:
Are any Fortunate numbers composite? (Fortune's conjecture)

(more unsolved problems in mathematics)

A Fortunate number, named after Reo Fortune, is the smallest integer m > 1 such that, for a given positive integer n, pn# + m is a prime number, where the primorial pn# is the product of the first n prime numbers.


For example, to find the seventh Fortunate number, one would first calculate the product of the first seven primes (2, 3, 5, 7, 11, 13 and 17), which is 510510. Adding 2 to that gives another even number, while adding 3 would give another multiple of 3. One would similarly rule out the integers up to 18. Adding 19, however, gives 510529, which is prime. Hence 19 is a Fortunate number. The Fortunate number for pn# is always above pn and all its divisors are larger than pn. This is because pn#, and thus pn# + m, is divisible by the prime factors of m not larger than pn.


The Fortunate numbers for the first primorials are:



3, 5, 7, 13, 23, 17, 19, 23, 37, 61, 67, 61, 71, 47, 107, 59, 61, 109, etc. (sequence A005235 in the OEIS).

The Fortunate numbers sorted in numerical order with duplicates removed:


3, 5, 7, 13, 17, 19, 23, 37, 47, 59, 61, 67, 71, 79, 89, 101, 103, 107, 109, 127, 151, 157, 163, 167, 191, 197, 199, ... (sequence A046066 in the OEIS).

Reo Fortune conjectured that no Fortunate number is composite (Fortune's conjecture).[1] A Fortunate prime is a Fortunate number which is also a prime number. As of 2012[update], all the known Fortunate numbers are prime.



References[edit]





  1. ^ Guy, Richard K. (1994). Unsolved problems in number theory (2nd ed.). Springer. pp. 7–8. ISBN 0-387-94289-0..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}




  • Chris Caldwell, "The Prime Glossary: Fortunate number" at the Prime Pages.

  • Weisstein, Eric W. "Fortunate Prime". MathWorld.











Retrieved from "https://en.wikipedia.org/w/index.php?title=Fortunate_number&oldid=845660694"





Navigation menu

























(window.RLQ=window.RLQ||).push(function(){mw.config.set({"wgPageParseReport":{"limitreport":{"cputime":"0.196","walltime":"0.256","ppvisitednodes":{"value":615,"limit":1000000},"ppgeneratednodes":{"value":0,"limit":1500000},"postexpandincludesize":{"value":82614,"limit":2097152},"templateargumentsize":{"value":639,"limit":2097152},"expansiondepth":{"value":12,"limit":40},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":4067,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 177.049 1 -total"," 41.75% 73.923 1 Template:Reflist"," 35.47% 62.801 1 Template:Cite_book"," 31.84% 56.381 7 Template:Navbox"," 22.82% 40.402 1 Template:Classes_of_natural_numbers"," 15.94% 28.219 1 Template:Distinguish"," 9.92% 17.566 1 Template:As_of"," 7.49% 13.254 1 Template:DMCA"," 5.84% 10.331 1 Template:Dated_maintenance_category"," 5.19% 9.185 1 Template:Icon"]},"scribunto":{"limitreport-timeusage":{"value":"0.077","limit":"10.000"},"limitreport-memusage":{"value":2787223,"limit":52428800}},"cachereport":{"origin":"mw1251","timestamp":"20181125223335","ttl":1900800,"transientcontent":false}}});mw.config.set({"wgBackendResponseTime":88,"wgHostname":"mw1265"});});

Popular posts from this blog

Florida Star v. B. J. F.

Danny Elfman

Lugert, Oklahoma