Skip to main content

Pyramidal number









Pyramidal number


From Wikipedia, the free encyclopedia

Jump to navigation
Jump to search


A pyramidal number is a figurate number that represents a pyramid with a polygonal base and a given number of triangular sides. The term usually refers to square pyramidal numbers, which have a square base with four sides, but it can also refer to:




  • Triangular pyramidal number (three sides)


  • Pentagonal pyramidal number (five sides)


  • Hexagonal pyramidal number (six sides)


  • Heptagonal pyramidal number (seven sides)


as well as to pyramids with higher numbers of sides [1]


The formula for an r-gonal pyramidal number is:


Pnr=3n2+n3(r−2)−n(r−5)6,{displaystyle P_{n}^{r}={frac {3n^{2}+n^{3}(r-2)-n(r-5)}{6}},}P_n^r= frac{3n^2 + n^3(r-2) - n(r-5)}{6},

with r ∈ ℕ, r ≥ 3.


This formula can be factorized as follows:


Pnr=n(n+1)[n(r−2)−(r−5)](2)(3)=[n(n+1)2][n(r−2)−(r−5)3]=Tn [n(r−2)−(r−5)3].{displaystyle {begin{aligned}P_{n}^{r}={frac {n(n+1)[n(r-2)-(r-5)]}{(2)(3)}}=left[{frac {n(n+1)}{2}}right]left[{frac {n(r-2)-(r-5)}{3}}right]=T_{n} left[{frac {n(r-2)-(r-5)}{3}}right]end{aligned}}.}begin{align}P_n^r=frac{n(n+1)[n(r-2)-(r-5)]}{(2)(3)}=left[frac{n(n+1)}{2}right]left[frac{n(r-2)-(r-5)}{3}right]=T_n left[frac{n(r-2)-(r-5)}{3}right]end{align}.


References[edit]




  1. ^ Sloane, N. J. A. (ed.). "Sequence A002414". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}










Retrieved from "https://en.wikipedia.org/w/index.php?title=Pyramidal_number&oldid=872690042"





Navigation menu

























(window.RLQ=window.RLQ||).push(function(){mw.config.set({"wgPageParseReport":{"limitreport":{"cputime":"0.104","walltime":"0.154","ppvisitednodes":{"value":136,"limit":1000000},"ppgeneratednodes":{"value":0,"limit":1500000},"postexpandincludesize":{"value":1937,"limit":2097152},"templateargumentsize":{"value":109,"limit":2097152},"expansiondepth":{"value":7,"limit":40},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":2496,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 111.208 1 Template:Cite_OEIS","100.00% 111.208 1 -total"," 88.48% 98.395 1 Template:Cite_web"," 2.62% 2.916 1 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.059","limit":"10.000"},"limitreport-memusage":{"value":1375989,"limit":52428800}},"cachereport":{"origin":"mw1348","timestamp":"20181208154649","ttl":1900800,"transientcontent":false}}});mw.config.set({"wgBackendResponseTime":82,"wgHostname":"mw1250"});});

Popular posts from this blog

Florida Star v. B. J. F.

Danny Elfman

Lugert, Oklahoma