Skip to main content

Almost prime

Multi tool use
Multi tool use









Almost prime


From Wikipedia, the free encyclopedia

Jump to navigation
Jump to search




Demonstration, with Cuisenaire rods, of the 2-almost prime nature of the number 6


In number theory, a natural number is called almost prime if there exists an absolute constant K such that the number has at most K prime factors.[1][2] An almost prime n is denoted by Pr if and only if the number of prime factors of n, counted according to multiplicity, is at most r.[3] A natural number is called k-almost prime if it has exactly k prime factors, counted with multiplicity. More formally, a number n is k-almost prime if and only if Ω(n) = k, where Ω(n) is the total number of primes in the prime factorization of n:


Ω(n):=∑aiifn=∏piai.{displaystyle Omega (n):=sum a_{i}qquad {mbox{if}}qquad n=prod p_{i}^{a_{i}}.}Omega (n):=sum a_{i}qquad {mbox{if}}qquad n=prod p_{i}^{a_{i}}.

A natural number is thus prime if and only if it is 1-almost prime, and semiprime if and only if it is 2-almost prime. The set of k-almost primes is usually denoted by Pk. The smallest k-almost prime is 2k. The first few k-almost primes are:














































































































k

k-almost primes

OEIS sequence
1 2, 3, 5, 7, 11, 13, 17, 19, …

A000040
2 4, 6, 9, 10, 14, 15, 21, 22, …

A001358
3 8, 12, 18, 20, 27, 28, 30, …

A014612
4 16, 24, 36, 40, 54, 56, 60, …

A014613
5 32, 48, 72, 80, 108, 112, …

A014614
6 64, 96, 144, 160, 216, 224, …

A046306
7 128, 192, 288, 320, 432, 448, …

A046308
8 256, 384, 576, 640, 864, 896, …

A046310
9 512, 768, 1152, 1280, 1728, …

A046312
10 1024, 1536, 2304, 2560, …

A046314
11 2048, 3072, 4608, 5120, …

A069272
12 4096, 6144, 9216, 10240, …

A069273
13 8192, 12288, 18432, 20480, …

A069274
14 16384, 24576, 36864, 40960, …

A069275
15 32768, 49152, 73728, 81920, …

A069276
16 65536, 98304, 147456, …

A069277
17 131072, 196608, 294912, …

A069278
18 262144, 393216, 589824, …

A069279
19 524288, 786432, 1179648, …

A069280
20 1048576, 1572864, 2359296, …

A069281

The number πk(n) of positive integers less than or equal to n with at most k prime divisors (not necessarily distinct) is asymptotic to:[4]


πk(n)∼(nlog⁡n)(log⁡log⁡n)k−1(k−1)!,{displaystyle pi _{k}(n)sim left({frac {n}{log n}}right){frac {(log log n)^{k-1}}{(k-1)!}},}pi _{k}(n)sim left({frac {n}{log n}}right){frac {(log log n)^{k-1}}{(k-1)!}},

a result of Landau. See also the Hardy–Ramanujan theorem.



References[edit]




  1. ^ Sándor, József; Dragoslav, Mitrinović S.; Crstici, Borislav (2006). Handbook of Number Theory I. Springer. p. 316. ISBN 978-1-4020-4215-7..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ Rényi, Alfréd A. (1948). "On the representation of an even number as the sum of a single prime and single almost-prime number". Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya (in Russian). 12 (1): 57–78.


  3. ^ Heath-Brown, D. R. (May 1978). "Almost-primes in arithmetic progressions and short intervals". Mathematical Proceedings of the Cambridge Philosophical Society. 83 (3): 357–375. doi:10.1017/S0305004100054657.


  4. ^ Tenenbaum, Gerald (1995). Introduction to Analytic and Probabilistic Number Theory. Cambridge University Press. ISBN 0-521-41261-7.



External links[edit]


  • Weisstein, Eric W. "Almost prime". MathWorld.











Retrieved from "https://en.wikipedia.org/w/index.php?title=Almost_prime&oldid=827530891"





Navigation menu

























(window.RLQ=window.RLQ||).push(function(){mw.config.set({"wgPageParseReport":{"limitreport":{"cputime":"0.352","walltime":"0.450","ppvisitednodes":{"value":1394,"limit":1000000},"ppgeneratednodes":{"value":0,"limit":1500000},"postexpandincludesize":{"value":128942,"limit":2097152},"templateargumentsize":{"value":2195,"limit":2097152},"expansiondepth":{"value":7,"limit":40},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":12805,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 260.625 1 -total"," 42.19% 109.959 8 Template:Navbox"," 37.99% 99.018 2 Template:Cite_book"," 20.50% 53.424 1 Template:Prime_number_classes"," 15.24% 39.707 2 Template:Cite_journal"," 14.83% 38.643 1 Template:Classes_of_natural_numbers"," 5.27% 13.726 2 Template:Icon"," 5.10% 13.302 1 Template:MathWorld"," 4.55% 11.870 33 Template:Math"," 4.03% 10.499 1 Template:Cite_web"]},"scribunto":{"limitreport-timeusage":{"value":"0.140","limit":"10.000"},"limitreport-memusage":{"value":3258059,"limit":52428800}},"cachereport":{"origin":"mw1269","timestamp":"20181125215853","ttl":1900800,"transientcontent":false}}});});{"@context":"https://schema.org","@type":"Article","name":"Almost prime","url":"https://en.wikipedia.org/wiki/Almost_prime","sameAs":"http://www.wikidata.org/entity/Q936614","mainEntity":"http://www.wikidata.org/entity/Q936614","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png"}},"datePublished":"2003-10-12T17:33:06Z","dateModified":"2018-02-25T07:19:39Z","image":"https://upload.wikimedia.org/wikipedia/commons/a/ab/Almost_prime_number_Cuisenaire_rods_6.png"}(window.RLQ=window.RLQ||).push(function(){mw.config.set({"wgBackendResponseTime":120,"wgHostname":"mw1326"});});I raxi1o 8LKiyF7xcWnL8 ef 3ejeg9noZQ5kCt9Vp1x3kBVZtkImSFUfYeBfkgwO
rSDZ2czjJP,9 8F0dvwz2de05RQA5ybFALEgN36y mZNr,CR,1S2jbgQ9NwCvRTJJJjt7VM0wHcweGA8E3fFavw1,BWA

Popular posts from this blog

Florida Star v. B. J. F.

Danny Elfman

The Sandy Post