Skip to main content

Almost prime









Almost prime


From Wikipedia, the free encyclopedia

Jump to navigation
Jump to search




Demonstration, with Cuisenaire rods, of the 2-almost prime nature of the number 6


In number theory, a natural number is called almost prime if there exists an absolute constant K such that the number has at most K prime factors.[1][2] An almost prime n is denoted by Pr if and only if the number of prime factors of n, counted according to multiplicity, is at most r.[3] A natural number is called k-almost prime if it has exactly k prime factors, counted with multiplicity. More formally, a number n is k-almost prime if and only if Ω(n) = k, where Ω(n) is the total number of primes in the prime factorization of n:


Ω(n):=∑aiifn=∏piai.{displaystyle Omega (n):=sum a_{i}qquad {mbox{if}}qquad n=prod p_{i}^{a_{i}}.}Omega (n):=sum a_{i}qquad {mbox{if}}qquad n=prod p_{i}^{a_{i}}.

A natural number is thus prime if and only if it is 1-almost prime, and semiprime if and only if it is 2-almost prime. The set of k-almost primes is usually denoted by Pk. The smallest k-almost prime is 2k. The first few k-almost primes are:














































































































k

k-almost primes

OEIS sequence
1 2, 3, 5, 7, 11, 13, 17, 19, …

A000040
2 4, 6, 9, 10, 14, 15, 21, 22, …

A001358
3 8, 12, 18, 20, 27, 28, 30, …

A014612
4 16, 24, 36, 40, 54, 56, 60, …

A014613
5 32, 48, 72, 80, 108, 112, …

A014614
6 64, 96, 144, 160, 216, 224, …

A046306
7 128, 192, 288, 320, 432, 448, …

A046308
8 256, 384, 576, 640, 864, 896, …

A046310
9 512, 768, 1152, 1280, 1728, …

A046312
10 1024, 1536, 2304, 2560, …

A046314
11 2048, 3072, 4608, 5120, …

A069272
12 4096, 6144, 9216, 10240, …

A069273
13 8192, 12288, 18432, 20480, …

A069274
14 16384, 24576, 36864, 40960, …

A069275
15 32768, 49152, 73728, 81920, …

A069276
16 65536, 98304, 147456, …

A069277
17 131072, 196608, 294912, …

A069278
18 262144, 393216, 589824, …

A069279
19 524288, 786432, 1179648, …

A069280
20 1048576, 1572864, 2359296, …

A069281

The number πk(n) of positive integers less than or equal to n with at most k prime divisors (not necessarily distinct) is asymptotic to:[4]


πk(n)∼(nlog⁡n)(log⁡log⁡n)k−1(k−1)!,{displaystyle pi _{k}(n)sim left({frac {n}{log n}}right){frac {(log log n)^{k-1}}{(k-1)!}},}pi _{k}(n)sim left({frac {n}{log n}}right){frac {(log log n)^{k-1}}{(k-1)!}},

a result of Landau. See also the Hardy–Ramanujan theorem.



References[edit]




  1. ^ Sándor, József; Dragoslav, Mitrinović S.; Crstici, Borislav (2006). Handbook of Number Theory I. Springer. p. 316. ISBN 978-1-4020-4215-7..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ Rényi, Alfréd A. (1948). "On the representation of an even number as the sum of a single prime and single almost-prime number". Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya (in Russian). 12 (1): 57–78.


  3. ^ Heath-Brown, D. R. (May 1978). "Almost-primes in arithmetic progressions and short intervals". Mathematical Proceedings of the Cambridge Philosophical Society. 83 (3): 357–375. doi:10.1017/S0305004100054657.


  4. ^ Tenenbaum, Gerald (1995). Introduction to Analytic and Probabilistic Number Theory. Cambridge University Press. ISBN 0-521-41261-7.



External links[edit]


  • Weisstein, Eric W. "Almost prime". MathWorld.











Retrieved from "https://en.wikipedia.org/w/index.php?title=Almost_prime&oldid=827530891"





Navigation menu

























(window.RLQ=window.RLQ||).push(function(){mw.config.set({"wgPageParseReport":{"limitreport":{"cputime":"0.352","walltime":"0.450","ppvisitednodes":{"value":1394,"limit":1000000},"ppgeneratednodes":{"value":0,"limit":1500000},"postexpandincludesize":{"value":128942,"limit":2097152},"templateargumentsize":{"value":2195,"limit":2097152},"expansiondepth":{"value":7,"limit":40},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":12805,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 260.625 1 -total"," 42.19% 109.959 8 Template:Navbox"," 37.99% 99.018 2 Template:Cite_book"," 20.50% 53.424 1 Template:Prime_number_classes"," 15.24% 39.707 2 Template:Cite_journal"," 14.83% 38.643 1 Template:Classes_of_natural_numbers"," 5.27% 13.726 2 Template:Icon"," 5.10% 13.302 1 Template:MathWorld"," 4.55% 11.870 33 Template:Math"," 4.03% 10.499 1 Template:Cite_web"]},"scribunto":{"limitreport-timeusage":{"value":"0.140","limit":"10.000"},"limitreport-memusage":{"value":3258059,"limit":52428800}},"cachereport":{"origin":"mw1269","timestamp":"20181125215853","ttl":1900800,"transientcontent":false}}});});{"@context":"https://schema.org","@type":"Article","name":"Almost prime","url":"https://en.wikipedia.org/wiki/Almost_prime","sameAs":"http://www.wikidata.org/entity/Q936614","mainEntity":"http://www.wikidata.org/entity/Q936614","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png"}},"datePublished":"2003-10-12T17:33:06Z","dateModified":"2018-02-25T07:19:39Z","image":"https://upload.wikimedia.org/wikipedia/commons/a/ab/Almost_prime_number_Cuisenaire_rods_6.png"}(window.RLQ=window.RLQ||).push(function(){mw.config.set({"wgBackendResponseTime":120,"wgHostname":"mw1326"});});

Popular posts from this blog

Florida Star v. B. J. F.

Danny Elfman

Lugert, Oklahoma