Skip to main content

Somer–Lucas pseudoprime

Multi tool use
Multi tool use









Somer–Lucas pseudoprime


From Wikipedia, the free encyclopedia

Jump to navigation
Jump to search


In mathematics, in particular number theory, an odd composite number N is a Somer–Lucas d-pseudoprime (with given d ≥ 1) if there exists a nondegenerate Lucas sequence U(P,Q){displaystyle U(P,Q)}U(P,Q) with the discriminant D=P2−4Q,{displaystyle D=P^{2}-4Q,}D=P^2-4Q, such that gcd(N,D)=1{displaystyle gcd(N,D)=1}gcd(N,D)=1 and the rank appearance of N in the sequence U(PQ) is


1d(N−(DN)),{displaystyle {frac {1}{d}}left(N-left({frac {D}{N}}right)right),}frac{1}{d}left(N-left(frac{D}{N}right)right),

where (DN){displaystyle left({frac {D}{N}}right)}left({frac  {D}{N}}right) is the Jacobi symbol.



Applications[edit]


Unlike the standard Lucas pseudoprimes, there is no known efficient primality test using the Lucas d-pseudoprimes. Hence they are not generally used for computation.



See also[edit]


Lawrence Somer, in his 1985 thesis, also defined the Somer d-pseudoprimes. They are described in brief on page 117 of Ribenbaum 1996.



References[edit]




  • Somer, Lawrence (1998). Bergum, Gerald E.; Philippou, Andreas N.; Horadam, A. F., eds. "On Lucas d-Pseudoprimes". Applications of Fibonacci Numbers. Springer Netherlands. 7: 369–375. doi:10.1007/978-94-011-5020-0_41..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  • Carlip, Walter; Somer, Lawrence (2007). "Square-free Lucas d-pseudoprimes and Carmichael-Lucas numbers". Czechoslovak Mathematical Journal. 57 (1).

  • Weisstein, Eric W. "Somer–Lucas Pseudoprime". MathWorld.


  • Ribenboim, P. (1996). "§2.X.D Somer-Lucas Pseudoprimes". The New Book of Prime Number Records (3rd ed.). New York: Springer-Verlag. pp. 131–132.











Retrieved from "https://en.wikipedia.org/w/index.php?title=Somer–Lucas_pseudoprime&oldid=744127553"





Navigation menu

























(window.RLQ=window.RLQ||).push(function(){mw.config.set({"wgPageParseReport":{"limitreport":{"cputime":"0.192","walltime":"0.270","ppvisitednodes":{"value":456,"limit":1000000},"ppgeneratednodes":{"value":0,"limit":1500000},"postexpandincludesize":{"value":83477,"limit":2097152},"templateargumentsize":{"value":72,"limit":2097152},"expansiondepth":{"value":7,"limit":40},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":6376,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 155.191 1 -total"," 61.68% 95.718 2 Template:Cite_journal"," 37.41% 58.054 7 Template:Navbox"," 28.79% 44.687 1 Template:Classes_of_natural_numbers"," 6.75% 10.470 1 Template:Icon"," 5.06% 7.850 1 Template:MathWorld"," 4.27% 6.619 1 Template:Cite_book"," 3.67% 5.691 1 Template:Cite_web"]},"scribunto":{"limitreport-timeusage":{"value":"0.091","limit":"10.000"},"limitreport-memusage":{"value":2586101,"limit":52428800}},"cachereport":{"origin":"mw1329","timestamp":"20181125225917","ttl":1900800,"transientcontent":false}}});mw.config.set({"wgBackendResponseTime":86,"wgHostname":"mw1249"});});hTF7UWNTMqXwEzBeHrXW1,uUid3zff,3rECM,Or,CfCc2,T4uJ,WA4me8Oa9T,xvanB9od0lX8X 8J7LNtF
Fx6Vz5Xn5sq DoBYoD Jql,xn o,28yMvm1MCcYq8,rWhYX

Popular posts from this blog

Florida Star v. B. J. F.

Danny Elfman

The Sandy Post