Skip to main content

Elliptic pseudoprime









Elliptic pseudoprime


From Wikipedia, the free encyclopedia

Jump to navigation
Jump to search


In number theory, a pseudoprime is called an elliptic pseudoprime for (EP), where E is an elliptic curve defined over the field of rational numbers with complex multiplication by an order in Q(−d){displaystyle mathbb {Q} {big (}{sqrt {-d}}{big )}}mathbb{Q} big(sqrt{- d} big), having equation y2 = x3 + ax + b with a, b integers, P being a point on E and n a natural number such that the Jacobi symbol (−d | n) = −1, if (n + 1)P ≡ 0 (mod n).


The number of elliptic pseudoprimes less than X is bounded above, for large X, by


X/exp⁡((1/3)log⁡Xlog⁡log⁡log⁡X/log⁡log⁡X) .{displaystyle X/exp((1/3)log Xlog log log X/log log X) .} X / exp((1/3)log X logloglog X /loglog X)  .


References[edit]



  • Gordon, Daniel M.; Pomerance, Carl (1991). "The distribution of Lucas and elliptic pseudoprimes". Mathematics of Computation. 57 (196): 825–838. doi:10.2307/2938720. Zbl 0774.11074..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


External links[edit]


  • Weisstein, Eric W. "Elliptic Pseudoprime". MathWorld.












Retrieved from "https://en.wikipedia.org/w/index.php?title=Elliptic_pseudoprime&oldid=607896568"





Navigation menu

























(window.RLQ=window.RLQ||).push(function(){mw.config.set({"wgPageParseReport":{"limitreport":{"cputime":"0.208","walltime":"0.294","ppvisitednodes":{"value":419,"limit":1000000},"ppgeneratednodes":{"value":0,"limit":1500000},"postexpandincludesize":{"value":83247,"limit":2097152},"templateargumentsize":{"value":97,"limit":2097152},"expansiondepth":{"value":7,"limit":40},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":3170,"limit":5000000},"entityaccesscount":{"value":2,"limit":400},"timingprofile":["100.00% 168.139 1 -total"," 55.82% 93.850 1 Template:Cite_journal"," 39.10% 65.736 7 Template:Navbox"," 27.46% 46.170 1 Template:Classes_of_natural_numbers"," 9.08% 15.261 1 Template:Num-stub"," 7.45% 12.534 1 Template:Asbox"," 6.13% 10.314 1 Template:Mathworld"," 5.78% 9.724 1 Template:Icon"," 3.48% 5.858 1 Template:Cite_web"," 1.26% 2.127 1 Template:Nowrap"]},"scribunto":{"limitreport-timeusage":{"value":"0.091","limit":"10.000"},"limitreport-memusage":{"value":2645661,"limit":52428800}},"cachereport":{"origin":"mw1255","timestamp":"20181125225814","ttl":1900800,"transientcontent":false}}});mw.config.set({"wgBackendResponseTime":104,"wgHostname":"mw1333"});});

Popular posts from this blog

Florida Star v. B. J. F.

Danny Elfman

Lugert, Oklahoma