Skip to main content

Heptagonal pyramidal number









Heptagonal pyramidal number


From Wikipedia, the free encyclopedia

Jump to navigation
Jump to search


In mathematics, a heptagonal pyramidal number is a figurate number representing the number of dots in a three-dimensional pattern in the shape of a heptagonal pyramid.[1]


The first few heptagonal pyramidal numbers are:[2]



1, 8, 26, 60, 115, 196, 308, 456, 645, 880, 1166, 1508, 1911, ... (sequence A002413 in the OEIS)

The nth heptagonal number can be calculated by adding up the first n heptagonal numbers, or more directly by using the formula[1][2]


n(n+1)(5n−2)6.{displaystyle {frac {n(n+1)(5n-2)}{6}}.}frac{n(n+1)(5n-2)}{6}.


References[edit]





  1. ^ ab Deza, Elena; Deza, M. (2012), Figurate Numbers, World Scientific, p. 92, ISBN 9789814355483.mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}.


  2. ^ ab Beiler, Albert H. (1966), Recreations in the Theory of Numbers: The Queen of Mathematics Entertains, Courier Dover Publications, p. 194, ISBN 9780486210964.












Retrieved from "https://en.wikipedia.org/w/index.php?title=Heptagonal_pyramidal_number&oldid=746903548"





Navigation menu

























(window.RLQ=window.RLQ||).push(function(){mw.config.set({"wgPageParseReport":{"limitreport":{"cputime":"0.212","walltime":"0.292","ppvisitednodes":{"value":519,"limit":1000000},"ppgeneratednodes":{"value":0,"limit":1500000},"postexpandincludesize":{"value":85069,"limit":2097152},"templateargumentsize":{"value":129,"limit":2097152},"expansiondepth":{"value":7,"limit":40},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":5913,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 169.838 1 -total"," 56.36% 95.713 1 Template:Reflist"," 47.28% 80.299 2 Template:Citation"," 34.20% 58.089 7 Template:Navbox"," 27.76% 47.154 1 Template:Classes_of_natural_numbers"," 11.01% 18.704 1 Template:Num-stub"," 9.48% 16.093 1 Template:Asbox"," 7.27% 12.353 1 Template:Icon"," 3.66% 6.219 1 Template:OEIS"," 1.70% 2.885 1 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.079","limit":"10.000"},"limitreport-memusage":{"value":2649138,"limit":52428800}},"cachereport":{"origin":"mw1331","timestamp":"20181126041009","ttl":1900800,"transientcontent":false}}});});{"@context":"https://schema.org","@type":"Article","name":"Heptagonal pyramidal number","url":"https://en.wikipedia.org/wiki/Heptagonal_pyramidal_number","sameAs":"http://www.wikidata.org/entity/Q606977","mainEntity":"http://www.wikidata.org/entity/Q606977","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png"}},"datePublished":"2004-04-09T16:29:37Z","dateModified":"2016-10-30T07:42:24Z","headline":"pyramidal number"}(window.RLQ=window.RLQ||).push(function(){mw.config.set({"wgBackendResponseTime":89,"wgHostname":"mw1251"});});

Popular posts from this blog

Florida Star v. B. J. F.

Danny Elfman

Lugert, Oklahoma