Skip to main content

Euler pseudoprime









Euler pseudoprime


From Wikipedia, the free encyclopedia

Jump to navigation
Jump to search


In arithmetic, an odd composite integer n is called an Euler pseudoprime to base a, if a and n are coprime, and


a(n−1)/2≡±1(modn){displaystyle a^{(n-1)/2}equiv pm 1{pmod {n}}}{displaystyle a^{(n-1)/2}equiv pm 1{pmod {n}}}

(where mod refers to the modulo operation).


The motivation for this definition is the fact that all prime numbers p satisfy the above equation which can be deduced from Fermat's little theorem. Fermat's theorem asserts that if p is prime, and coprime to a, then ap−1 ≡ 1 (mod p). Suppose that p>2 is prime, then p can be expressed as 2q + 1 where q is an integer. Thus, a(2q+1) − 1 ≡ 1 (mod p), which means that a2q − 1 ≡ 0 (mod p). This can be factored as (aq − 1)(aq + 1) ≡ 0 (mod p), which is equivalent to a(p−1)/2 ≡ ±1 (mod p).


The equation can be tested rather quickly, which can be used for probabilistic primality testing. These tests are twice as strong as tests based on Fermat's little theorem.


Every Euler pseudoprime is also a Fermat pseudoprime. It is not possible to produce a definite test of primality based on whether a number is an Euler pseudoprime because there exist absolute Euler pseudoprimes, numbers which are Euler pseudoprimes to every base relatively prime to themselves. The absolute Euler pseudoprimes are a subset of the absolute Fermat pseudoprimes, or Carmichael numbers, and the smallest absolute Euler pseudoprime is 1729 = 7×13×19.




Contents






  • 1 Relation to Euler-Jacobi pseudoprimes


  • 2 Examples


  • 3 Least Euler pseudoprime to base n


  • 4 See also


  • 5 References





Relation to Euler-Jacobi pseudoprimes[edit]


The slightly stronger condition that


a(n−1)/2≡(an)(modn){displaystyle a^{(n-1)/2}equiv left({frac {a}{n}}right){pmod {n}}}a^{(n-1)/2}equiv left({frac {a}{n}}right){pmod {n}}

where n is an odd composite, the greatest common divisor of a and n equals 1, and (a/n) is the Jacobi symbol, is the more common definition of an Euler pseudoprime.
See, for example, page 115 of the book by Koblitz listed below, page 90 of the book by Riesel, or page 1003 of.[1]
A discussion of numbers of this form can be found at Euler–Jacobi pseudoprime. There are no absolute Euler-Jacobi pseudoprimes.[1]:p. 1004



Examples[edit]
































































































































n
Euler pseudoprimes to base n
1
9, 15, 21, 25, 27, 33, 35, 39, 45, 49, 51, 55, 57, 63, 65, 69, 75, 77, 81, 85, 87, 91, 93, 95, 99, 105, 111, 115, 117, 119, 121, 123, 125, 129, 133, 135, 141, 143, 145, 147, 153, 155, 159, 161, 165, 169, 171, 175, 177, 183, 185, 187, 189, 195, 201, 203, 205, 207, 209, 213, 215, 217, 219, 221, 225, 231, 235, 237, 243, 245, 247, 249, 253, 255, 259, 261, 265, 267, 273, 275, 279, 285, 287, 289, 291, 295, 297, 299, ... (all odd composites)
2
341, 561, 1105, 1729, 1905, 2047, 2465, 3277, 4033, 4681, 5461, 6601, 8321, 8481, ...
3
121, 703, 1541, 1729, 1891, 2465, 2821, 3281, 4961, 7381, 8401, 8911, ...
4
341, 561, 645, 1105, 1387, 1729, 1905, 2047, 2465, 2701, 2821, 3277, 4033, 4369, 4371, 4681, 5461, 6601, 7957, 8321, 8481, 8911, ...
5
217, 781, 1541, 1729, 5461, 5611, 6601, 7449, 7813, ...
6
185, 217, 301, 481, 1111, 1261, 1333, 1729, 2465, 2701, 3421, 3565, 3589, 3913, 5713, 6533, 8365, ...
7
25, 325, 703, 817, 1825, 2101, 2353, 2465, 3277, 4525, 6697, 8321, ...
8
9, 21, 65, 105, 133, 273, 341, 481, 511, 561, 585, 1001, 1105, 1281, 1417, 1541, 1661, 1729, 1905, 2047, 2465, 2501, 3201, 3277, 3641, 4033, 4097, 4641, 4681, 4921, 5461, 6305, 6533, 6601, 7161, 8321, 8481, 9265, 9709, ...
9
91, 121, 671, 703, 949, 1105, 1541, 1729, 1891, 2465, 2665, 2701, 2821, 3281, 3367, 3751, 4961, 5551, 6601, 7381, 8401, 8911, ...
10
9, 33, 91, 481, 657, 1233, 1729, 2821, 2981, 4187, 5461, 6533, 6541, 6601, 7777, 8149, 8401, ...
11
133, 305, 481, 645, 793, 1729, 2047, 2257, 2465, 4577, 4921, 5041, 5185, 8113, ...
12
65, 91, 133, 145, 247, 377, 385, 1649, 1729, 2041, 2233, 2465, 2821, 3553, 6305, 8911, 9073, ...
13
21, 85, 105, 561, 1099, 1785, 2465, 5149, 5185, 7107, 8841, 8911, 9577, 9637, ...
14
15, 65, 481, 781, 793, 841, 985, 1541, 2257, 2465, 2561, 2743, 3277, 5185, 5713, 6533, 6541, 7171, 7449, 7585, 8321, 9073, ...
15
341, 1477, 1541, 1687, 1729, 1921, 3277, 6541, 9073, ...
16
15, 85, 91, 341, 435, 451, 561, 645, 703, 1105, 1247, 1271, 1387, 1581, 1695, 1729, 1891, 1905, 2047, 2071, 2465, 2701, 2821, 3133, 3277, 3367, 3683, 4033, 4369, 4371, 4681, 4795, 4859, 5461, 5551, 6601, 6643, 7957, 8321, 8481, 8695, 8911, 9061, 9131, 9211, 9605, 9919, ...
17
9, 91, 145, 781, 1111, 1305, 1729, 2149, 2821, 4033, 4187, 5365, 5833, 6697, 7171, ...
18
25, 49, 65, 133, 325, 343, 425, 1105, 1225, 1369, 1387, 1729, 1921, 2149, 2465, 2977, 4577, 5725, 5833, 5941, 6305, 6517, 6601, 7345, ...
19
9, 45, 49, 169, 343, 561, 889, 905, 1105, 1661, 1849, 2353, 2465, 2701, 3201, 4033, 4681, 5461, 5713, 6541, 6697, 7957, 8145, 8281, 8401, 9997, ...
20
21, 57, 133, 671, 889, 1281, 1653, 1729, 1891, 2059, 2413, 2761, 3201, 5461, 5473, 5713, 5833, 6601, 6817, 7999, ...
21
65, 221, 703, 793, 1045, 1105, 2465, 3781, 5185, 5473, 6541, 7363, 8965, 9061, ...
22
21, 69, 91, 105, 161, 169, 345, 485, 1183, 1247, 1541, 1729, 2041, 2047, 2413, 2465, 2821, 3241, 3801, 5551, 7665, 9453, ...
23
33, 169, 265, 341, 385, 481, 553, 1065, 1271, 1729, 2321, 2465, 2701, 2821, 3097, 4033, 4081, 4345, 4371, 4681, 5149, 6533, 6541, 7189, 7957, 8321, 8651, 8745, 8911, 9805, ...
24
25, 175, 553, 805, 949, 1541, 1729, 1825, 1975, 2413, 2465, 2701, 3781, 4537, 6931, 7501, 9085, 9361, ...
25
217, 561, 781, 1541, 1729, 1891, 2821, 4123, 5461, 5611, 5731, 6601, 7449, 7813, 8029, 8911, 9881, ...
26
9, 25, 27, 45, 133, 217, 225, 475, 561, 589, 703, 925, 1065, 2465, 3325, 3385, 3565, 3825, 4741, 4921, 5041, 5425, 6697, 8029, 9073, ...
27
65, 121, 133, 259, 341, 365, 481, 703, 1001, 1541, 1649, 1729, 1891, 2465, 2821, 2981, 2993, 3281, 4033, 4745, 4921, 4961, 5461, 6305, 6533, 7381, 7585, 8321, 8401, 8911, 9809, 9841, 9881, ...
28
9, 27, 145, 261, 361, 529, 785, 1305, 1431, 2041, 2413, 2465, 3201, 3277, 4553, 4699, 5149, 7065, 8321, 8401, 9841, ...
29
15, 21, 91, 105, 341, 469, 481, 793, 871, 1729, 1897, 2105, 2257, 2821, 4371, 4411, 5149, 5185, 5473, 5565, 6097, 7161, 8321, 8401, 8421, 8841, ...
30
49, 133, 217, 341, 403, 469, 589, 637, 871, 901, 931, 1273, 1537, 1729, 2059, 2077, 2821, 3097, 3277, 4081, 4097, 5729, 6031, 6061, 6097, 6409, 6817, 7657, 8023, 8029, 8401, 9881, ...


Least Euler pseudoprime to base n[edit]














































































































































































































































































































































n
Least EPSP

n
Least EPSP

n
Least EPSP

n
Least EPSP
1
9
33
545
65
33
97
21
2
341
34
21
66
65
98
9
3
121
35
9
67
33
99
25
4
341
36
35
68
25
100
9
5
217
37
9
69
35
101
25
6
185
38
39
70
69
102
133
7
25
39
133
71
9
103
51
8
9
40
39
72
85
104
15
9
91
41
21
73
9
105
451
10
9
42
451
74
15
106
15
11
133
43
21
75
91
107
9
12
65
44
9
76
15
108
91
13
21
45
133
77
39
109
9
14
15
46
9
78
77
110
111
15
341
47
65
79
39
111
55
16
15
48
49
80
9
112
65
17
9
49
25
81
91
113
21
18
25
50
21
82
9
114
115
19
9
51
25
83
21
115
57
20
21
52
51
84
85
116
9
21
65
53
9
85
21
117
49
22
21
54
55
86
65
118
9
23
33
55
9
87
133
119
15
24
25
56
33
88
87
120
77
25
217
57
25
89
9
121
15
26
9
58
57
90
91
122
33
27
65
59
15
91
9
123
85
28
9
60
341
92
21
124
25
29
15
61
15
93
25
125
9
30
49
62
9
94
57
126
25
31
15
63
341
95
141
127
9
32
25
64
9
96
65
128
49


See also[edit]


  • Probable prime


References[edit]





  1. ^ ab Carl Pomerance; John L. Selfridge; Samuel S. Wagstaff, Jr. (July 1980). "The pseudoprimes to 25·109" (PDF). Mathematics of Computation. 35 (151): 1003–1026. doi:10.1090/S0025-5718-1980-0572872-7..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}




  • M. Koblitz, "A Course in Number Theory and Cryptography", Springer-Verlag, 1987.

  • H. Riesel, "Prime numbers and computer methods of factorisation", Birkhäuser, Boston, Mass., 1985.











Retrieved from "https://en.wikipedia.org/w/index.php?title=Euler_pseudoprime&oldid=831237609"





Navigation menu

























(window.RLQ=window.RLQ||).push(function(){mw.config.set({"wgPageParseReport":{"limitreport":{"cputime":"0.268","walltime":"0.354","ppvisitednodes":{"value":468,"limit":1000000},"ppgeneratednodes":{"value":0,"limit":1500000},"postexpandincludesize":{"value":79892,"limit":2097152},"templateargumentsize":{"value":88,"limit":2097152},"expansiondepth":{"value":7,"limit":40},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":3260,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 179.817 1 -total"," 62.52% 112.430 1 Template:Reflist"," 54.36% 97.748 1 Template:Cite_journal"," 48.33% 86.899 7 Template:Navbox"," 35.00% 62.940 1 Template:Classes_of_natural_numbers"," 7.28% 13.094 1 Template:Icon"," 2.37% 4.262 1 Template:Rp"," 1.89% 3.396 1 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.093","limit":"10.000"},"limitreport-memusage":{"value":2654697,"limit":52428800}},"cachereport":{"origin":"mw1268","timestamp":"20181125222355","ttl":1900800,"transientcontent":false}}});mw.config.set({"wgBackendResponseTime":89,"wgHostname":"mw1273"});});

Popular posts from this blog

Florida Star v. B. J. F.

Danny Elfman

Lugert, Oklahoma