Storing the topic models in a list also considering the maximum occurrences











up vote
0
down vote

favorite












I am performing topic modelling and using functions to get the top keywords in the topic models as shown below.



def getTopKWords(self, K):

results =
"""
returns top K discriminative words for topic t
ie words v for which p(v|t) is maximum
"""
index =
key_terms =



pseudocounts = np.copy(self.n_vt)
normalizer = np.sum(pseudocounts, (0))
pseudocounts /= normalizer[np.newaxis, :]
for t in range(self.numTopics):
topWordIndices = pseudocounts[:, t].argsort()[-1:-(K+1):-1]
vocab = self.vectorizer.get_feature_names()
print (t, [vocab[i] for i in topWordIndices])
## Code for storing the values in a single list
return results


The above functions gives me the code as shown in the fig



0 ['computer', 'laptop', 'mac', 'use', 'bought', 'like', 'warranty', 'screen', 'way', 'just']
1 ['laptop', 'computer', 'use', 'just', 'like', 'time', 'great', 'windows', 'macbook', 'months']
2 ['computer', 'great', 'laptop', 'mac', 'buy', 'just', 'macbook', 'use', 'pro', 'windows']
3 ['laptop', 'computer', 'great', 'time', 'battery', 'use', 'apple', 'love', 'just', 'work']


It results from the 4 time the loop runs and print index and all keywords in each vocab.



Now, I want to return a single list from the function which returns me the following output.



return   [keyword1, keyword2, keyword3, keyword4]


where, keyword1/2/3/4 are the words which were occuring the most in vocab lists with index 0, 1,2,3 in output.










share|improve this question




























    up vote
    0
    down vote

    favorite












    I am performing topic modelling and using functions to get the top keywords in the topic models as shown below.



    def getTopKWords(self, K):

    results =
    """
    returns top K discriminative words for topic t
    ie words v for which p(v|t) is maximum
    """
    index =
    key_terms =



    pseudocounts = np.copy(self.n_vt)
    normalizer = np.sum(pseudocounts, (0))
    pseudocounts /= normalizer[np.newaxis, :]
    for t in range(self.numTopics):
    topWordIndices = pseudocounts[:, t].argsort()[-1:-(K+1):-1]
    vocab = self.vectorizer.get_feature_names()
    print (t, [vocab[i] for i in topWordIndices])
    ## Code for storing the values in a single list
    return results


    The above functions gives me the code as shown in the fig



    0 ['computer', 'laptop', 'mac', 'use', 'bought', 'like', 'warranty', 'screen', 'way', 'just']
    1 ['laptop', 'computer', 'use', 'just', 'like', 'time', 'great', 'windows', 'macbook', 'months']
    2 ['computer', 'great', 'laptop', 'mac', 'buy', 'just', 'macbook', 'use', 'pro', 'windows']
    3 ['laptop', 'computer', 'great', 'time', 'battery', 'use', 'apple', 'love', 'just', 'work']


    It results from the 4 time the loop runs and print index and all keywords in each vocab.



    Now, I want to return a single list from the function which returns me the following output.



    return   [keyword1, keyword2, keyword3, keyword4]


    where, keyword1/2/3/4 are the words which were occuring the most in vocab lists with index 0, 1,2,3 in output.










    share|improve this question


























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      I am performing topic modelling and using functions to get the top keywords in the topic models as shown below.



      def getTopKWords(self, K):

      results =
      """
      returns top K discriminative words for topic t
      ie words v for which p(v|t) is maximum
      """
      index =
      key_terms =



      pseudocounts = np.copy(self.n_vt)
      normalizer = np.sum(pseudocounts, (0))
      pseudocounts /= normalizer[np.newaxis, :]
      for t in range(self.numTopics):
      topWordIndices = pseudocounts[:, t].argsort()[-1:-(K+1):-1]
      vocab = self.vectorizer.get_feature_names()
      print (t, [vocab[i] for i in topWordIndices])
      ## Code for storing the values in a single list
      return results


      The above functions gives me the code as shown in the fig



      0 ['computer', 'laptop', 'mac', 'use', 'bought', 'like', 'warranty', 'screen', 'way', 'just']
      1 ['laptop', 'computer', 'use', 'just', 'like', 'time', 'great', 'windows', 'macbook', 'months']
      2 ['computer', 'great', 'laptop', 'mac', 'buy', 'just', 'macbook', 'use', 'pro', 'windows']
      3 ['laptop', 'computer', 'great', 'time', 'battery', 'use', 'apple', 'love', 'just', 'work']


      It results from the 4 time the loop runs and print index and all keywords in each vocab.



      Now, I want to return a single list from the function which returns me the following output.



      return   [keyword1, keyword2, keyword3, keyword4]


      where, keyword1/2/3/4 are the words which were occuring the most in vocab lists with index 0, 1,2,3 in output.










      share|improve this question















      I am performing topic modelling and using functions to get the top keywords in the topic models as shown below.



      def getTopKWords(self, K):

      results =
      """
      returns top K discriminative words for topic t
      ie words v for which p(v|t) is maximum
      """
      index =
      key_terms =



      pseudocounts = np.copy(self.n_vt)
      normalizer = np.sum(pseudocounts, (0))
      pseudocounts /= normalizer[np.newaxis, :]
      for t in range(self.numTopics):
      topWordIndices = pseudocounts[:, t].argsort()[-1:-(K+1):-1]
      vocab = self.vectorizer.get_feature_names()
      print (t, [vocab[i] for i in topWordIndices])
      ## Code for storing the values in a single list
      return results


      The above functions gives me the code as shown in the fig



      0 ['computer', 'laptop', 'mac', 'use', 'bought', 'like', 'warranty', 'screen', 'way', 'just']
      1 ['laptop', 'computer', 'use', 'just', 'like', 'time', 'great', 'windows', 'macbook', 'months']
      2 ['computer', 'great', 'laptop', 'mac', 'buy', 'just', 'macbook', 'use', 'pro', 'windows']
      3 ['laptop', 'computer', 'great', 'time', 'battery', 'use', 'apple', 'love', 'just', 'work']


      It results from the 4 time the loop runs and print index and all keywords in each vocab.



      Now, I want to return a single list from the function which returns me the following output.



      return   [keyword1, keyword2, keyword3, keyword4]


      where, keyword1/2/3/4 are the words which were occuring the most in vocab lists with index 0, 1,2,3 in output.







      python python-3.x






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 10 at 18:49

























      asked Nov 10 at 18:21









      Shivam Panchal

      388




      388
























          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          You can use collection.Counter:



          from collections import Counter

          a = ['computer', 'laptop', 'mac', 'use', 'bought', 'like',
          'warranty', 'screen', 'way', 'just']
          b = ['laptop', 'computer', 'use', 'just', 'like', 'time',
          'great', 'windows', 'macbook', 'months']
          c = ['computer', 'great', 'laptop', 'mac', 'buy', 'just',
          'macbook', 'use', 'pro', 'windows']
          d = ['laptop', 'computer', 'great', 'time', 'battery', 'use',
          'apple', 'love', 'just', 'work']

          def get_most_common(*kwargs):
          """Accepts iterables, feeds all into Counter and returns the Counter instance"""
          c = Counter()
          for k in kwargs:
          c.update(k)
          return c

          # get the most common ones
          mc = get_most_common(a,b,c,d).most_common()

          # print top 4 keys
          top4 = [k for k,v in mc[0:4]]
          print (top4)


          Output:



          ['computer', 'laptop', 'use', 'just']




           some_results =  # store stuff



          for t in range(self.numTopics):
          topWordIndices = pseudocounts[:, t].argsort()[-1:-(K+1):-1]
          vocab = self.vectorizer.get_feature_names()
          print (t, [vocab[i] for i in topWordIndices])



                some_results.append( [vocab[i] for i in topWordIndices] )

          mc = get_most_common(*some_results).most_common()
          return [k for k,v in mc[0:4]]





          share|improve this answer



















          • 1




            @ShivamPanchal what? It is one fuction that you provide your lists - .most_common() is explained in the documentation of Counter - read it. top4 is just list slicing of the (key,count) tuples provided by most_common(). Your code above uses list slicing - so thats nothing new to you - is it?
            – Patrick Artner
            Nov 10 at 18:57












          • I am trying to use it in my code, but not working, can you add it in my code, It will be great
            – Shivam Panchal
            Nov 10 at 19:22










          • really sorry, but I got this. TypeError: unhashable type: 'slice'
            – Shivam Panchal
            Nov 10 at 19:51






          • 1




            @ShivamPanchal forgot a .most_common()
            – Patrick Artner
            Nov 10 at 19:51











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53242049%2fstoring-the-topic-models-in-a-list-also-considering-the-maximum-occurrences%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          1
          down vote



          accepted










          You can use collection.Counter:



          from collections import Counter

          a = ['computer', 'laptop', 'mac', 'use', 'bought', 'like',
          'warranty', 'screen', 'way', 'just']
          b = ['laptop', 'computer', 'use', 'just', 'like', 'time',
          'great', 'windows', 'macbook', 'months']
          c = ['computer', 'great', 'laptop', 'mac', 'buy', 'just',
          'macbook', 'use', 'pro', 'windows']
          d = ['laptop', 'computer', 'great', 'time', 'battery', 'use',
          'apple', 'love', 'just', 'work']

          def get_most_common(*kwargs):
          """Accepts iterables, feeds all into Counter and returns the Counter instance"""
          c = Counter()
          for k in kwargs:
          c.update(k)
          return c

          # get the most common ones
          mc = get_most_common(a,b,c,d).most_common()

          # print top 4 keys
          top4 = [k for k,v in mc[0:4]]
          print (top4)


          Output:



          ['computer', 'laptop', 'use', 'just']




           some_results =  # store stuff



          for t in range(self.numTopics):
          topWordIndices = pseudocounts[:, t].argsort()[-1:-(K+1):-1]
          vocab = self.vectorizer.get_feature_names()
          print (t, [vocab[i] for i in topWordIndices])



                some_results.append( [vocab[i] for i in topWordIndices] )

          mc = get_most_common(*some_results).most_common()
          return [k for k,v in mc[0:4]]





          share|improve this answer



















          • 1




            @ShivamPanchal what? It is one fuction that you provide your lists - .most_common() is explained in the documentation of Counter - read it. top4 is just list slicing of the (key,count) tuples provided by most_common(). Your code above uses list slicing - so thats nothing new to you - is it?
            – Patrick Artner
            Nov 10 at 18:57












          • I am trying to use it in my code, but not working, can you add it in my code, It will be great
            – Shivam Panchal
            Nov 10 at 19:22










          • really sorry, but I got this. TypeError: unhashable type: 'slice'
            – Shivam Panchal
            Nov 10 at 19:51






          • 1




            @ShivamPanchal forgot a .most_common()
            – Patrick Artner
            Nov 10 at 19:51















          up vote
          1
          down vote



          accepted










          You can use collection.Counter:



          from collections import Counter

          a = ['computer', 'laptop', 'mac', 'use', 'bought', 'like',
          'warranty', 'screen', 'way', 'just']
          b = ['laptop', 'computer', 'use', 'just', 'like', 'time',
          'great', 'windows', 'macbook', 'months']
          c = ['computer', 'great', 'laptop', 'mac', 'buy', 'just',
          'macbook', 'use', 'pro', 'windows']
          d = ['laptop', 'computer', 'great', 'time', 'battery', 'use',
          'apple', 'love', 'just', 'work']

          def get_most_common(*kwargs):
          """Accepts iterables, feeds all into Counter and returns the Counter instance"""
          c = Counter()
          for k in kwargs:
          c.update(k)
          return c

          # get the most common ones
          mc = get_most_common(a,b,c,d).most_common()

          # print top 4 keys
          top4 = [k for k,v in mc[0:4]]
          print (top4)


          Output:



          ['computer', 'laptop', 'use', 'just']




           some_results =  # store stuff



          for t in range(self.numTopics):
          topWordIndices = pseudocounts[:, t].argsort()[-1:-(K+1):-1]
          vocab = self.vectorizer.get_feature_names()
          print (t, [vocab[i] for i in topWordIndices])



                some_results.append( [vocab[i] for i in topWordIndices] )

          mc = get_most_common(*some_results).most_common()
          return [k for k,v in mc[0:4]]





          share|improve this answer



















          • 1




            @ShivamPanchal what? It is one fuction that you provide your lists - .most_common() is explained in the documentation of Counter - read it. top4 is just list slicing of the (key,count) tuples provided by most_common(). Your code above uses list slicing - so thats nothing new to you - is it?
            – Patrick Artner
            Nov 10 at 18:57












          • I am trying to use it in my code, but not working, can you add it in my code, It will be great
            – Shivam Panchal
            Nov 10 at 19:22










          • really sorry, but I got this. TypeError: unhashable type: 'slice'
            – Shivam Panchal
            Nov 10 at 19:51






          • 1




            @ShivamPanchal forgot a .most_common()
            – Patrick Artner
            Nov 10 at 19:51













          up vote
          1
          down vote



          accepted







          up vote
          1
          down vote



          accepted






          You can use collection.Counter:



          from collections import Counter

          a = ['computer', 'laptop', 'mac', 'use', 'bought', 'like',
          'warranty', 'screen', 'way', 'just']
          b = ['laptop', 'computer', 'use', 'just', 'like', 'time',
          'great', 'windows', 'macbook', 'months']
          c = ['computer', 'great', 'laptop', 'mac', 'buy', 'just',
          'macbook', 'use', 'pro', 'windows']
          d = ['laptop', 'computer', 'great', 'time', 'battery', 'use',
          'apple', 'love', 'just', 'work']

          def get_most_common(*kwargs):
          """Accepts iterables, feeds all into Counter and returns the Counter instance"""
          c = Counter()
          for k in kwargs:
          c.update(k)
          return c

          # get the most common ones
          mc = get_most_common(a,b,c,d).most_common()

          # print top 4 keys
          top4 = [k for k,v in mc[0:4]]
          print (top4)


          Output:



          ['computer', 'laptop', 'use', 'just']




           some_results =  # store stuff



          for t in range(self.numTopics):
          topWordIndices = pseudocounts[:, t].argsort()[-1:-(K+1):-1]
          vocab = self.vectorizer.get_feature_names()
          print (t, [vocab[i] for i in topWordIndices])



                some_results.append( [vocab[i] for i in topWordIndices] )

          mc = get_most_common(*some_results).most_common()
          return [k for k,v in mc[0:4]]





          share|improve this answer














          You can use collection.Counter:



          from collections import Counter

          a = ['computer', 'laptop', 'mac', 'use', 'bought', 'like',
          'warranty', 'screen', 'way', 'just']
          b = ['laptop', 'computer', 'use', 'just', 'like', 'time',
          'great', 'windows', 'macbook', 'months']
          c = ['computer', 'great', 'laptop', 'mac', 'buy', 'just',
          'macbook', 'use', 'pro', 'windows']
          d = ['laptop', 'computer', 'great', 'time', 'battery', 'use',
          'apple', 'love', 'just', 'work']

          def get_most_common(*kwargs):
          """Accepts iterables, feeds all into Counter and returns the Counter instance"""
          c = Counter()
          for k in kwargs:
          c.update(k)
          return c

          # get the most common ones
          mc = get_most_common(a,b,c,d).most_common()

          # print top 4 keys
          top4 = [k for k,v in mc[0:4]]
          print (top4)


          Output:



          ['computer', 'laptop', 'use', 'just']




           some_results =  # store stuff



          for t in range(self.numTopics):
          topWordIndices = pseudocounts[:, t].argsort()[-1:-(K+1):-1]
          vocab = self.vectorizer.get_feature_names()
          print (t, [vocab[i] for i in topWordIndices])



                some_results.append( [vocab[i] for i in topWordIndices] )

          mc = get_most_common(*some_results).most_common()
          return [k for k,v in mc[0:4]]






          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Nov 10 at 19:51

























          answered Nov 10 at 18:37









          Patrick Artner

          18k51839




          18k51839








          • 1




            @ShivamPanchal what? It is one fuction that you provide your lists - .most_common() is explained in the documentation of Counter - read it. top4 is just list slicing of the (key,count) tuples provided by most_common(). Your code above uses list slicing - so thats nothing new to you - is it?
            – Patrick Artner
            Nov 10 at 18:57












          • I am trying to use it in my code, but not working, can you add it in my code, It will be great
            – Shivam Panchal
            Nov 10 at 19:22










          • really sorry, but I got this. TypeError: unhashable type: 'slice'
            – Shivam Panchal
            Nov 10 at 19:51






          • 1




            @ShivamPanchal forgot a .most_common()
            – Patrick Artner
            Nov 10 at 19:51














          • 1




            @ShivamPanchal what? It is one fuction that you provide your lists - .most_common() is explained in the documentation of Counter - read it. top4 is just list slicing of the (key,count) tuples provided by most_common(). Your code above uses list slicing - so thats nothing new to you - is it?
            – Patrick Artner
            Nov 10 at 18:57












          • I am trying to use it in my code, but not working, can you add it in my code, It will be great
            – Shivam Panchal
            Nov 10 at 19:22










          • really sorry, but I got this. TypeError: unhashable type: 'slice'
            – Shivam Panchal
            Nov 10 at 19:51






          • 1




            @ShivamPanchal forgot a .most_common()
            – Patrick Artner
            Nov 10 at 19:51








          1




          1




          @ShivamPanchal what? It is one fuction that you provide your lists - .most_common() is explained in the documentation of Counter - read it. top4 is just list slicing of the (key,count) tuples provided by most_common(). Your code above uses list slicing - so thats nothing new to you - is it?
          – Patrick Artner
          Nov 10 at 18:57






          @ShivamPanchal what? It is one fuction that you provide your lists - .most_common() is explained in the documentation of Counter - read it. top4 is just list slicing of the (key,count) tuples provided by most_common(). Your code above uses list slicing - so thats nothing new to you - is it?
          – Patrick Artner
          Nov 10 at 18:57














          I am trying to use it in my code, but not working, can you add it in my code, It will be great
          – Shivam Panchal
          Nov 10 at 19:22




          I am trying to use it in my code, but not working, can you add it in my code, It will be great
          – Shivam Panchal
          Nov 10 at 19:22












          really sorry, but I got this. TypeError: unhashable type: 'slice'
          – Shivam Panchal
          Nov 10 at 19:51




          really sorry, but I got this. TypeError: unhashable type: 'slice'
          – Shivam Panchal
          Nov 10 at 19:51




          1




          1




          @ShivamPanchal forgot a .most_common()
          – Patrick Artner
          Nov 10 at 19:51




          @ShivamPanchal forgot a .most_common()
          – Patrick Artner
          Nov 10 at 19:51


















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53242049%2fstoring-the-topic-models-in-a-list-also-considering-the-maximum-occurrences%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Florida Star v. B. J. F.

          Danny Elfman

          Retrieve a Users Dashboard in Tumblr with R and TumblR. Oauth Issues