Why is my bilinear interpolation vastly different from the in-built matlab function?
I've been working on bilinear interpolation based on wiki example in matlab. I followed the example to the T, but when comparing the outputs from my function and the in-built matlab function, the results are vastly different and I can't figure out why or how that happens.
Using inbuilt matlab function:
Result of my function below:
function T = bilinear(X,h,w)
%pre-allocating the output size
T = uint8(zeros(h,w));
%padding the original image with 0 so i don't go out of bounds
X = padarray(X,[2,2],'both');
%calculating dimension ratios
hr = h/size(X,1);
wr = w/size(X,2);
for row = 3:h-3
for col = 3:w-3
%for calculating equivalent position on the original image
o_row = ceil(row/hr);
o_col = ceil(col/wr);
%getting the intensity values from horizontal neighbors
Q12=X(o_row+1,o_col-1);
Q22=X(o_row+1,o_col+1);
Q11=X(o_row-1,o_col-1);
Q21=X(o_row-1,o_col+1);
%calculating the relative positions to the enlarged image
y2=round((o_row-1)*hr);
y=round(o_row*hr);
y1=round((o_row+1)*hr);
x1=round((o_col-1)*wr);
x=round(o_col*wr);
x2=round((o_col+1)*wr);
%interpolating on 2 first axis and the result between them
R1=((x2-x)/(x2-x1))*Q11+((x-x1)/(x2-x1))*Q21;
R2=((x2-x)/(x2-x1))*Q12+((x-x1)/(x2-x1))*Q22;
P=round(((y2-y)/(y2-y1))*R1+((y-y1)/(y2-y1))*R2);
T(row,col) = P;
T = uint8(T);
end
end
end
The arguments passed to the function are step4 = bilinear(Igray,1668,1836); (scale factor of 3).
matlab image-processing bilinear-interpolation
add a comment |
I've been working on bilinear interpolation based on wiki example in matlab. I followed the example to the T, but when comparing the outputs from my function and the in-built matlab function, the results are vastly different and I can't figure out why or how that happens.
Using inbuilt matlab function:
Result of my function below:
function T = bilinear(X,h,w)
%pre-allocating the output size
T = uint8(zeros(h,w));
%padding the original image with 0 so i don't go out of bounds
X = padarray(X,[2,2],'both');
%calculating dimension ratios
hr = h/size(X,1);
wr = w/size(X,2);
for row = 3:h-3
for col = 3:w-3
%for calculating equivalent position on the original image
o_row = ceil(row/hr);
o_col = ceil(col/wr);
%getting the intensity values from horizontal neighbors
Q12=X(o_row+1,o_col-1);
Q22=X(o_row+1,o_col+1);
Q11=X(o_row-1,o_col-1);
Q21=X(o_row-1,o_col+1);
%calculating the relative positions to the enlarged image
y2=round((o_row-1)*hr);
y=round(o_row*hr);
y1=round((o_row+1)*hr);
x1=round((o_col-1)*wr);
x=round(o_col*wr);
x2=round((o_col+1)*wr);
%interpolating on 2 first axis and the result between them
R1=((x2-x)/(x2-x1))*Q11+((x-x1)/(x2-x1))*Q21;
R2=((x2-x)/(x2-x1))*Q12+((x-x1)/(x2-x1))*Q22;
P=round(((y2-y)/(y2-y1))*R1+((y-y1)/(y2-y1))*R2);
T(row,col) = P;
T = uint8(T);
end
end
end
The arguments passed to the function are step4 = bilinear(Igray,1668,1836); (scale factor of 3).
matlab image-processing bilinear-interpolation
1
Also,uint8(zeros(h,w))
creates a double array and concerts it to uint8. It’s better to dozeros(h,w,'uint8')
.
– Cris Luengo
Nov 14 '18 at 14:41
Removing relevant code is generally considered vandalism. Please don't do it. By posting on the Stack Exchange (SE) network, you've granted a non-revocable right, under the CC BY-SA 3.0 license, for SE to distribute that content (i.e. regardless of your future choices). By SE policy, the non-vandalized version of the post is the one which is distributed. Thus, any vandalism will be reverted. If you want to know more about deleting a post please see: How does deleting work? ...
– Makyen
Nov 14 '18 at 21:53
add a comment |
I've been working on bilinear interpolation based on wiki example in matlab. I followed the example to the T, but when comparing the outputs from my function and the in-built matlab function, the results are vastly different and I can't figure out why or how that happens.
Using inbuilt matlab function:
Result of my function below:
function T = bilinear(X,h,w)
%pre-allocating the output size
T = uint8(zeros(h,w));
%padding the original image with 0 so i don't go out of bounds
X = padarray(X,[2,2],'both');
%calculating dimension ratios
hr = h/size(X,1);
wr = w/size(X,2);
for row = 3:h-3
for col = 3:w-3
%for calculating equivalent position on the original image
o_row = ceil(row/hr);
o_col = ceil(col/wr);
%getting the intensity values from horizontal neighbors
Q12=X(o_row+1,o_col-1);
Q22=X(o_row+1,o_col+1);
Q11=X(o_row-1,o_col-1);
Q21=X(o_row-1,o_col+1);
%calculating the relative positions to the enlarged image
y2=round((o_row-1)*hr);
y=round(o_row*hr);
y1=round((o_row+1)*hr);
x1=round((o_col-1)*wr);
x=round(o_col*wr);
x2=round((o_col+1)*wr);
%interpolating on 2 first axis and the result between them
R1=((x2-x)/(x2-x1))*Q11+((x-x1)/(x2-x1))*Q21;
R2=((x2-x)/(x2-x1))*Q12+((x-x1)/(x2-x1))*Q22;
P=round(((y2-y)/(y2-y1))*R1+((y-y1)/(y2-y1))*R2);
T(row,col) = P;
T = uint8(T);
end
end
end
The arguments passed to the function are step4 = bilinear(Igray,1668,1836); (scale factor of 3).
matlab image-processing bilinear-interpolation
I've been working on bilinear interpolation based on wiki example in matlab. I followed the example to the T, but when comparing the outputs from my function and the in-built matlab function, the results are vastly different and I can't figure out why or how that happens.
Using inbuilt matlab function:
Result of my function below:
function T = bilinear(X,h,w)
%pre-allocating the output size
T = uint8(zeros(h,w));
%padding the original image with 0 so i don't go out of bounds
X = padarray(X,[2,2],'both');
%calculating dimension ratios
hr = h/size(X,1);
wr = w/size(X,2);
for row = 3:h-3
for col = 3:w-3
%for calculating equivalent position on the original image
o_row = ceil(row/hr);
o_col = ceil(col/wr);
%getting the intensity values from horizontal neighbors
Q12=X(o_row+1,o_col-1);
Q22=X(o_row+1,o_col+1);
Q11=X(o_row-1,o_col-1);
Q21=X(o_row-1,o_col+1);
%calculating the relative positions to the enlarged image
y2=round((o_row-1)*hr);
y=round(o_row*hr);
y1=round((o_row+1)*hr);
x1=round((o_col-1)*wr);
x=round(o_col*wr);
x2=round((o_col+1)*wr);
%interpolating on 2 first axis and the result between them
R1=((x2-x)/(x2-x1))*Q11+((x-x1)/(x2-x1))*Q21;
R2=((x2-x)/(x2-x1))*Q12+((x-x1)/(x2-x1))*Q22;
P=round(((y2-y)/(y2-y1))*R1+((y-y1)/(y2-y1))*R2);
T(row,col) = P;
T = uint8(T);
end
end
end
The arguments passed to the function are step4 = bilinear(Igray,1668,1836); (scale factor of 3).
matlab image-processing bilinear-interpolation
matlab image-processing bilinear-interpolation
edited Nov 15 '18 at 10:21
BSMP
2,60952435
2,60952435
asked Nov 14 '18 at 14:10
VocaloidasVocaloidas
598
598
1
Also,uint8(zeros(h,w))
creates a double array and concerts it to uint8. It’s better to dozeros(h,w,'uint8')
.
– Cris Luengo
Nov 14 '18 at 14:41
Removing relevant code is generally considered vandalism. Please don't do it. By posting on the Stack Exchange (SE) network, you've granted a non-revocable right, under the CC BY-SA 3.0 license, for SE to distribute that content (i.e. regardless of your future choices). By SE policy, the non-vandalized version of the post is the one which is distributed. Thus, any vandalism will be reverted. If you want to know more about deleting a post please see: How does deleting work? ...
– Makyen
Nov 14 '18 at 21:53
add a comment |
1
Also,uint8(zeros(h,w))
creates a double array and concerts it to uint8. It’s better to dozeros(h,w,'uint8')
.
– Cris Luengo
Nov 14 '18 at 14:41
Removing relevant code is generally considered vandalism. Please don't do it. By posting on the Stack Exchange (SE) network, you've granted a non-revocable right, under the CC BY-SA 3.0 license, for SE to distribute that content (i.e. regardless of your future choices). By SE policy, the non-vandalized version of the post is the one which is distributed. Thus, any vandalism will be reverted. If you want to know more about deleting a post please see: How does deleting work? ...
– Makyen
Nov 14 '18 at 21:53
1
1
Also,
uint8(zeros(h,w))
creates a double array and concerts it to uint8. It’s better to do zeros(h,w,'uint8')
.– Cris Luengo
Nov 14 '18 at 14:41
Also,
uint8(zeros(h,w))
creates a double array and concerts it to uint8. It’s better to do zeros(h,w,'uint8')
.– Cris Luengo
Nov 14 '18 at 14:41
Removing relevant code is generally considered vandalism. Please don't do it. By posting on the Stack Exchange (SE) network, you've granted a non-revocable right, under the CC BY-SA 3.0 license, for SE to distribute that content (i.e. regardless of your future choices). By SE policy, the non-vandalized version of the post is the one which is distributed. Thus, any vandalism will be reverted. If you want to know more about deleting a post please see: How does deleting work? ...
– Makyen
Nov 14 '18 at 21:53
Removing relevant code is generally considered vandalism. Please don't do it. By posting on the Stack Exchange (SE) network, you've granted a non-revocable right, under the CC BY-SA 3.0 license, for SE to distribute that content (i.e. regardless of your future choices). By SE policy, the non-vandalized version of the post is the one which is distributed. Thus, any vandalism will be reverted. If you want to know more about deleting a post please see: How does deleting work? ...
– Makyen
Nov 14 '18 at 21:53
add a comment |
1 Answer
1
active
oldest
votes
You are finding the pixel nearest to the point you want to interpolate, then find 4 of this pixel’s neighbors and interpolate between them:
o_row = ceil(row/hr);
o_col = ceil(col/wr);
Q12=X(o_row+1,o_col-1);
Q22=X(o_row+1,o_col+1);
Q11=X(o_row-1,o_col-1);
Q21=X(o_row-1,o_col+1);
Instead, find the 4 pixels nearest the point you want to interpolate:
o_row = ceil(row/hr);
o_col = ceil(col/wr);
Q12=X(o_row,o_col-1);
Q22=X(o_row,o_col);
Q11=X(o_row-1,o_col-1);
Q21=X(o_row-1,o_col);
The same pixel’s coordinates then need to be used when computing distances. The easiest way to do that is to separate out the floating-point coordinates of the output pixel ((row,col)
) in the input image (o_row,o_col)
, and the location of the nearest pixel in the input image (fo_row,fo_col)
. Then, the distances are simply d_row = o_row - fo_row
and 1-d_row
, etc.
This is how I would write this function:
function T = bilinear(X,h,w)
% Pre-allocating the output size
T = zeros(h,w,'uint8'); % Create the matrix in the right type, rather than cast !!
% Calculating dimension ratios
hr = h/size(X,1); % Not with the padded sizes!!
wr = w/size(X,2);
% Padding the original image with 0 so I don't go out of bounds
pad = 2;
X = padarray(X,[pad,pad],'both');
% Loop
for col = 1:w % Looping over the row in the inner loop is faster!!
for row = 1:h
% For calculating equivalent position on the original image
o_row = row/hr;
o_col = col/wr;
fo_row = floor(o_row); % Code is simpler when using floor here !!
fo_col = floor(o_col);
% Getting the intensity values from horizontal neighbors
Q11 = double(X(fo_row +pad, fo_col +pad)); % Indexing taking padding into account !!
Q21 = double(X(fo_row+1+pad, fo_col +pad)); % Casting to double might not be necessary, but MATLAB does weird things with integer computation !!
Q12 = double(X(fo_row +pad, fo_col+1+pad));
Q22 = double(X(fo_row+1+pad, fo_col+1+pad));
% Calculating the relative positions to the enlarged image
d_row = o_row - fo_row;
d_col = o_col - fo_col;
% Interpolating on 2 first axis and the result between them
R1 = (1-d_row)*Q11 + d_row*Q21;
R2 = (1-d_row)*Q12 + d_row*Q22;
T(row,col) = round((1-d_col)*R1 + d_col*R2);
end
end
end
@Vocaloidas that is wrong. You use 4 adjacent pixels for interpolation, not the neighbors.
– Ander Biguri
Nov 14 '18 at 15:34
@Vocaloidas: I have updated the answer with a suggestion for how to compute the distances properly. I have also included my modifications to your code, just to make sure I wasn't telling you something wrong. :)
– Cris Luengo
Nov 14 '18 at 15:40
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53302184%2fwhy-is-my-bilinear-interpolation-vastly-different-from-the-in-built-matlab-funct%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
You are finding the pixel nearest to the point you want to interpolate, then find 4 of this pixel’s neighbors and interpolate between them:
o_row = ceil(row/hr);
o_col = ceil(col/wr);
Q12=X(o_row+1,o_col-1);
Q22=X(o_row+1,o_col+1);
Q11=X(o_row-1,o_col-1);
Q21=X(o_row-1,o_col+1);
Instead, find the 4 pixels nearest the point you want to interpolate:
o_row = ceil(row/hr);
o_col = ceil(col/wr);
Q12=X(o_row,o_col-1);
Q22=X(o_row,o_col);
Q11=X(o_row-1,o_col-1);
Q21=X(o_row-1,o_col);
The same pixel’s coordinates then need to be used when computing distances. The easiest way to do that is to separate out the floating-point coordinates of the output pixel ((row,col)
) in the input image (o_row,o_col)
, and the location of the nearest pixel in the input image (fo_row,fo_col)
. Then, the distances are simply d_row = o_row - fo_row
and 1-d_row
, etc.
This is how I would write this function:
function T = bilinear(X,h,w)
% Pre-allocating the output size
T = zeros(h,w,'uint8'); % Create the matrix in the right type, rather than cast !!
% Calculating dimension ratios
hr = h/size(X,1); % Not with the padded sizes!!
wr = w/size(X,2);
% Padding the original image with 0 so I don't go out of bounds
pad = 2;
X = padarray(X,[pad,pad],'both');
% Loop
for col = 1:w % Looping over the row in the inner loop is faster!!
for row = 1:h
% For calculating equivalent position on the original image
o_row = row/hr;
o_col = col/wr;
fo_row = floor(o_row); % Code is simpler when using floor here !!
fo_col = floor(o_col);
% Getting the intensity values from horizontal neighbors
Q11 = double(X(fo_row +pad, fo_col +pad)); % Indexing taking padding into account !!
Q21 = double(X(fo_row+1+pad, fo_col +pad)); % Casting to double might not be necessary, but MATLAB does weird things with integer computation !!
Q12 = double(X(fo_row +pad, fo_col+1+pad));
Q22 = double(X(fo_row+1+pad, fo_col+1+pad));
% Calculating the relative positions to the enlarged image
d_row = o_row - fo_row;
d_col = o_col - fo_col;
% Interpolating on 2 first axis and the result between them
R1 = (1-d_row)*Q11 + d_row*Q21;
R2 = (1-d_row)*Q12 + d_row*Q22;
T(row,col) = round((1-d_col)*R1 + d_col*R2);
end
end
end
@Vocaloidas that is wrong. You use 4 adjacent pixels for interpolation, not the neighbors.
– Ander Biguri
Nov 14 '18 at 15:34
@Vocaloidas: I have updated the answer with a suggestion for how to compute the distances properly. I have also included my modifications to your code, just to make sure I wasn't telling you something wrong. :)
– Cris Luengo
Nov 14 '18 at 15:40
add a comment |
You are finding the pixel nearest to the point you want to interpolate, then find 4 of this pixel’s neighbors and interpolate between them:
o_row = ceil(row/hr);
o_col = ceil(col/wr);
Q12=X(o_row+1,o_col-1);
Q22=X(o_row+1,o_col+1);
Q11=X(o_row-1,o_col-1);
Q21=X(o_row-1,o_col+1);
Instead, find the 4 pixels nearest the point you want to interpolate:
o_row = ceil(row/hr);
o_col = ceil(col/wr);
Q12=X(o_row,o_col-1);
Q22=X(o_row,o_col);
Q11=X(o_row-1,o_col-1);
Q21=X(o_row-1,o_col);
The same pixel’s coordinates then need to be used when computing distances. The easiest way to do that is to separate out the floating-point coordinates of the output pixel ((row,col)
) in the input image (o_row,o_col)
, and the location of the nearest pixel in the input image (fo_row,fo_col)
. Then, the distances are simply d_row = o_row - fo_row
and 1-d_row
, etc.
This is how I would write this function:
function T = bilinear(X,h,w)
% Pre-allocating the output size
T = zeros(h,w,'uint8'); % Create the matrix in the right type, rather than cast !!
% Calculating dimension ratios
hr = h/size(X,1); % Not with the padded sizes!!
wr = w/size(X,2);
% Padding the original image with 0 so I don't go out of bounds
pad = 2;
X = padarray(X,[pad,pad],'both');
% Loop
for col = 1:w % Looping over the row in the inner loop is faster!!
for row = 1:h
% For calculating equivalent position on the original image
o_row = row/hr;
o_col = col/wr;
fo_row = floor(o_row); % Code is simpler when using floor here !!
fo_col = floor(o_col);
% Getting the intensity values from horizontal neighbors
Q11 = double(X(fo_row +pad, fo_col +pad)); % Indexing taking padding into account !!
Q21 = double(X(fo_row+1+pad, fo_col +pad)); % Casting to double might not be necessary, but MATLAB does weird things with integer computation !!
Q12 = double(X(fo_row +pad, fo_col+1+pad));
Q22 = double(X(fo_row+1+pad, fo_col+1+pad));
% Calculating the relative positions to the enlarged image
d_row = o_row - fo_row;
d_col = o_col - fo_col;
% Interpolating on 2 first axis and the result between them
R1 = (1-d_row)*Q11 + d_row*Q21;
R2 = (1-d_row)*Q12 + d_row*Q22;
T(row,col) = round((1-d_col)*R1 + d_col*R2);
end
end
end
@Vocaloidas that is wrong. You use 4 adjacent pixels for interpolation, not the neighbors.
– Ander Biguri
Nov 14 '18 at 15:34
@Vocaloidas: I have updated the answer with a suggestion for how to compute the distances properly. I have also included my modifications to your code, just to make sure I wasn't telling you something wrong. :)
– Cris Luengo
Nov 14 '18 at 15:40
add a comment |
You are finding the pixel nearest to the point you want to interpolate, then find 4 of this pixel’s neighbors and interpolate between them:
o_row = ceil(row/hr);
o_col = ceil(col/wr);
Q12=X(o_row+1,o_col-1);
Q22=X(o_row+1,o_col+1);
Q11=X(o_row-1,o_col-1);
Q21=X(o_row-1,o_col+1);
Instead, find the 4 pixels nearest the point you want to interpolate:
o_row = ceil(row/hr);
o_col = ceil(col/wr);
Q12=X(o_row,o_col-1);
Q22=X(o_row,o_col);
Q11=X(o_row-1,o_col-1);
Q21=X(o_row-1,o_col);
The same pixel’s coordinates then need to be used when computing distances. The easiest way to do that is to separate out the floating-point coordinates of the output pixel ((row,col)
) in the input image (o_row,o_col)
, and the location of the nearest pixel in the input image (fo_row,fo_col)
. Then, the distances are simply d_row = o_row - fo_row
and 1-d_row
, etc.
This is how I would write this function:
function T = bilinear(X,h,w)
% Pre-allocating the output size
T = zeros(h,w,'uint8'); % Create the matrix in the right type, rather than cast !!
% Calculating dimension ratios
hr = h/size(X,1); % Not with the padded sizes!!
wr = w/size(X,2);
% Padding the original image with 0 so I don't go out of bounds
pad = 2;
X = padarray(X,[pad,pad],'both');
% Loop
for col = 1:w % Looping over the row in the inner loop is faster!!
for row = 1:h
% For calculating equivalent position on the original image
o_row = row/hr;
o_col = col/wr;
fo_row = floor(o_row); % Code is simpler when using floor here !!
fo_col = floor(o_col);
% Getting the intensity values from horizontal neighbors
Q11 = double(X(fo_row +pad, fo_col +pad)); % Indexing taking padding into account !!
Q21 = double(X(fo_row+1+pad, fo_col +pad)); % Casting to double might not be necessary, but MATLAB does weird things with integer computation !!
Q12 = double(X(fo_row +pad, fo_col+1+pad));
Q22 = double(X(fo_row+1+pad, fo_col+1+pad));
% Calculating the relative positions to the enlarged image
d_row = o_row - fo_row;
d_col = o_col - fo_col;
% Interpolating on 2 first axis and the result between them
R1 = (1-d_row)*Q11 + d_row*Q21;
R2 = (1-d_row)*Q12 + d_row*Q22;
T(row,col) = round((1-d_col)*R1 + d_col*R2);
end
end
end
You are finding the pixel nearest to the point you want to interpolate, then find 4 of this pixel’s neighbors and interpolate between them:
o_row = ceil(row/hr);
o_col = ceil(col/wr);
Q12=X(o_row+1,o_col-1);
Q22=X(o_row+1,o_col+1);
Q11=X(o_row-1,o_col-1);
Q21=X(o_row-1,o_col+1);
Instead, find the 4 pixels nearest the point you want to interpolate:
o_row = ceil(row/hr);
o_col = ceil(col/wr);
Q12=X(o_row,o_col-1);
Q22=X(o_row,o_col);
Q11=X(o_row-1,o_col-1);
Q21=X(o_row-1,o_col);
The same pixel’s coordinates then need to be used when computing distances. The easiest way to do that is to separate out the floating-point coordinates of the output pixel ((row,col)
) in the input image (o_row,o_col)
, and the location of the nearest pixel in the input image (fo_row,fo_col)
. Then, the distances are simply d_row = o_row - fo_row
and 1-d_row
, etc.
This is how I would write this function:
function T = bilinear(X,h,w)
% Pre-allocating the output size
T = zeros(h,w,'uint8'); % Create the matrix in the right type, rather than cast !!
% Calculating dimension ratios
hr = h/size(X,1); % Not with the padded sizes!!
wr = w/size(X,2);
% Padding the original image with 0 so I don't go out of bounds
pad = 2;
X = padarray(X,[pad,pad],'both');
% Loop
for col = 1:w % Looping over the row in the inner loop is faster!!
for row = 1:h
% For calculating equivalent position on the original image
o_row = row/hr;
o_col = col/wr;
fo_row = floor(o_row); % Code is simpler when using floor here !!
fo_col = floor(o_col);
% Getting the intensity values from horizontal neighbors
Q11 = double(X(fo_row +pad, fo_col +pad)); % Indexing taking padding into account !!
Q21 = double(X(fo_row+1+pad, fo_col +pad)); % Casting to double might not be necessary, but MATLAB does weird things with integer computation !!
Q12 = double(X(fo_row +pad, fo_col+1+pad));
Q22 = double(X(fo_row+1+pad, fo_col+1+pad));
% Calculating the relative positions to the enlarged image
d_row = o_row - fo_row;
d_col = o_col - fo_col;
% Interpolating on 2 first axis and the result between them
R1 = (1-d_row)*Q11 + d_row*Q21;
R2 = (1-d_row)*Q12 + d_row*Q22;
T(row,col) = round((1-d_col)*R1 + d_col*R2);
end
end
end
edited Nov 14 '18 at 15:39
answered Nov 14 '18 at 14:29
Cris LuengoCris Luengo
20.7k52249
20.7k52249
@Vocaloidas that is wrong. You use 4 adjacent pixels for interpolation, not the neighbors.
– Ander Biguri
Nov 14 '18 at 15:34
@Vocaloidas: I have updated the answer with a suggestion for how to compute the distances properly. I have also included my modifications to your code, just to make sure I wasn't telling you something wrong. :)
– Cris Luengo
Nov 14 '18 at 15:40
add a comment |
@Vocaloidas that is wrong. You use 4 adjacent pixels for interpolation, not the neighbors.
– Ander Biguri
Nov 14 '18 at 15:34
@Vocaloidas: I have updated the answer with a suggestion for how to compute the distances properly. I have also included my modifications to your code, just to make sure I wasn't telling you something wrong. :)
– Cris Luengo
Nov 14 '18 at 15:40
@Vocaloidas that is wrong. You use 4 adjacent pixels for interpolation, not the neighbors.
– Ander Biguri
Nov 14 '18 at 15:34
@Vocaloidas that is wrong. You use 4 adjacent pixels for interpolation, not the neighbors.
– Ander Biguri
Nov 14 '18 at 15:34
@Vocaloidas: I have updated the answer with a suggestion for how to compute the distances properly. I have also included my modifications to your code, just to make sure I wasn't telling you something wrong. :)
– Cris Luengo
Nov 14 '18 at 15:40
@Vocaloidas: I have updated the answer with a suggestion for how to compute the distances properly. I have also included my modifications to your code, just to make sure I wasn't telling you something wrong. :)
– Cris Luengo
Nov 14 '18 at 15:40
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53302184%2fwhy-is-my-bilinear-interpolation-vastly-different-from-the-in-built-matlab-funct%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Also,
uint8(zeros(h,w))
creates a double array and concerts it to uint8. It’s better to dozeros(h,w,'uint8')
.– Cris Luengo
Nov 14 '18 at 14:41
Removing relevant code is generally considered vandalism. Please don't do it. By posting on the Stack Exchange (SE) network, you've granted a non-revocable right, under the CC BY-SA 3.0 license, for SE to distribute that content (i.e. regardless of your future choices). By SE policy, the non-vandalized version of the post is the one which is distributed. Thus, any vandalism will be reverted. If you want to know more about deleting a post please see: How does deleting work? ...
– Makyen
Nov 14 '18 at 21:53