Spacecraft







More than 100 Soviet and Russian Soyuz manned spacecraft (TMA version shown) have flown since 1967 and now support the International Space Station.



Columbia's first launch on the mission

The US Space Shuttle flew 135 times from 1981 to 2011, supporting Spacelab, Mir, and the ISS. (Columbia's first launch, which had a white external tank, shown)


A spacecraft is a vehicle or machine designed to fly in outer space. Spacecraft are used for a variety of purposes, including communications, earth observation, meteorology, navigation, space colonization, planetary exploration, and transportation of humans and cargo. All spacecraft except single-stage-to-orbit vehicles cannot get into space on their own, and require a launch vehicle (carrier rocket)


On a sub-orbital spaceflight, a space vehicle enters space and then returns to the surface, without having gone into an orbit. For orbital spaceflights, spacecraft enter closed orbits around the Earth or around other celestial bodies. Spacecraft used for human spaceflight carry people on board as crew or passengers from start or on orbit (space stations) only, whereas those used for robotic space missions operate either autonomously or telerobotically. Robotic spacecraft used to support scientific research are space probes. Robotic spacecraft that remain in orbit around a planetary body are artificial satellites. Only a handful of interstellar probes, such as Pioneer 10 and 11, Voyager 1 and 2, and New Horizons, are on trajectories that leave the Solar System.


Orbital spacecraft may be recoverable or not. By method of reentry to Earth they may be divided in non-winged space capsules and winged spaceplanes.


Humanity has achieved space flight but only a few nations have the technology for orbital launches: Russia (RSA or "Roscosmos"), the United States (NASA), the member states of the European Space Agency (ESA), Japan (JAXA), China (CNSA), India (ISRO), Taiwan[1][2][3][4] (National Chung-Shan Institute of Science and Technology, Taiwan National Space Organization (NSPO),[5][6][7]Israel (ISA), Iran (ISA), and North Korea (NADA).




Contents






  • 1 History


  • 2 Spacecraft types


    • 2.1 Crewed spacecraft


      • 2.1.1 Spaceplanes




    • 2.2 Unmanned spacecraft


      • 2.2.1 Designed as manned but flown as unmanned only spacecraft


      • 2.2.2 Semi-manned – manned as space stations or part of space stations


      • 2.2.3 Earth-orbit satellites


      • 2.2.4 Lunar probes


      • 2.2.5 Planetary probes


      • 2.2.6 Other – deep space


      • 2.2.7 Fastest spacecraft


      • 2.2.8 Furthest spacecraft from the Sun




    • 2.3 Unfunded and canceled programs


      • 2.3.1 Manned spacecraft


      • 2.3.2 Multi-stage spaceplanes


      • 2.3.3 SSTO spaceplanes






  • 3 Spacecraft under development


    • 3.1 Manned


    • 3.2 Unmanned




  • 4 Subsystems


  • 5 See also


  • 6 References


  • 7 External links





History





The first artificial satellite, Sputnik 1. It was launched by the Soviet Union


A German V-2 became the first spacecraft when it reached an altitude of 189 km in June 1944 in Peenemünde, Germany.[8]Sputnik 1 was the first artificial satellite. It was launched into an elliptical low Earth orbit (LEO) by the Soviet Union on 4 October 1957. The launch ushered in new political, military, technological, and scientific developments; while the Sputnik launch was a single event, it marked the start of the Space Age.[9][10] Apart from its value as a technological first, Sputnik 1 also helped to identify the upper atmospheric layer's density, through measuring the satellite's orbital changes. It also provided data on radio-signal distribution in the ionosphere. Pressurized nitrogen in the satellite's false body provided the first opportunity for meteoroid detection. Sputnik 1 was launched during the International Geophysical Year from Site No.1/5, at the 5th Tyuratam range, in Kazakh SSR (now at the Baikonur Cosmodrome). The satellite travelled at 29,000 kilometers (18,000 mi) per hour, taking 96.2 minutes to complete an orbit, and emitted radio signals at 20.005 and 40.002 MHz


While Sputnik 1 was the first spacecraft to orbit the Earth, other man-made objects had previously reached an altitude of 100 km, which is the height required by the international organization Fédération Aéronautique Internationale to count as a spaceflight. This altitude is called the Kármán line. In particular, in the 1940s there were several test launches of the V-2 rocket, some of which reached altitudes well over 100 km.



Spacecraft types



Crewed spacecraft





Apollo 17 Command Module in Lunar orbit


As of 2016, only three nations have flown crewed spacecraft: USSR/Russia, USA, and China.
The first crewed spacecraft was Vostok 1, which carried Soviet cosmonaut Yuri Gagarin into space in 1961, and completed a full Earth orbit. There were five other crewed missions which used a Vostok spacecraft.[11] The second crewed spacecraft was named Freedom 7, and it performed a sub-orbital spaceflight in 1961 carrying American astronaut Alan Shepard to an altitude of just over 187 kilometers (116 mi). There were five other crewed missions using Mercury spacecraft.


Other Soviet crewed spacecraft include the Voskhod, Soyuz, flown un crewed as Zond/L1, L3, TKS, and the Salyut and Mir crewed space stations. Other American crewed spacecraft include the Gemini spacecraft, Apollo spacecraft, the Skylab space station, and the Space Shuttle with undetached European Spacelab and private US Spacehab space stations-modules. China developed, but did not fly Shuguang, and is currently using Shenzhou (its first crewed mission was in 2003).


Except for the space shuttle, all of the recoverable crewed orbital spacecraft were space capsules.



The International Space Station, crewed since November 2000, is a joint venture between Russia, the United States, Canada and several other countries.



Spaceplanes






Columbia orbiter landing


Some reusable vehicles have been designed only for crewed spaceflight, and these are often called spaceplanes. The first example of such was the North American X-15 spaceplane, which conducted two crewed flights which reached an altitude of over 100 km in the 1960s. The first reusable spacecraft, the X-15, was air-launched on a suborbital trajectory on July 19, 1963.


The first partially reusable orbital spacecraft, a winged non-capsule, the Space Shuttle, was launched by the USA on the 20th anniversary of Yuri Gagarin's flight, on April 12, 1981. During the Shuttle era, six orbiters were built, all of which have flown in the atmosphere and five of which have flown in space. Enterprise was used only for approach and landing tests, launching from the back of a Boeing 747 SCA and gliding to deadstick landings at Edwards AFB, California. The first Space Shuttle to fly into space was Columbia, followed by Challenger, Discovery, Atlantis, and Endeavour. Endeavour was built to replace Challenger when it was lost in January 1986. Columbia broke up during reentry in February 2003.


The first automatic partially reusable spacecraft was the Buran-class shuttle, launched by the USSR on November 15, 1988, although it made only one flight and this was uncrewed. This spaceplane was designed for a crew and strongly resembled the U.S. Space Shuttle, although its drop-off boosters used liquid propellants and its main engines were located at the base of what would be the external tank in the American Shuttle. Lack of funding, complicated by the dissolution of the USSR, prevented any further flights of Buran. The Space Shuttle was subsequently modified to allow for autonomous re-entry in case of necessity.


Per the Vision for Space Exploration, the Space Shuttle was retired in 2011 due mainly to its old age and high cost of program reaching over a billion dollars per flight. The Shuttle's human transport role is to be replaced by SpaceX's Dragon V2 and Boeing's CST-100 Starliner no later than 2017. The Shuttle's heavy cargo transport role is to be replaced by expendable rockets such as the Space Launch System and SpaceX's Falcon Heavy.


Scaled Composites' SpaceShipOne was a reusable suborbital spaceplane that carried pilots Mike Melvill and Brian Binnie on consecutive flights in 2004 to win the Ansari X Prize. The Spaceship Company will build its successor SpaceShipTwo. A fleet of SpaceShipTwos operated by Virgin Galactic was planned to begin reusable private spaceflight carrying paying passengers in 2014, but was delayed after the crash of VSS Enterprise.



Unmanned spacecraft






Hubble Space Telescope





Jules Verne Automated Transfer Vehicle (ATV) approaches the International Space Station on Monday, March 31, 2008





Mariner 10 diagram of trajectory past planet Venus



Designed as manned but flown as unmanned only spacecraft




  • Zond/L1 – lunar flyby capsule


  • L3 – capsule and lunar lander


  • TKS – capsule


  • Buran-class shuttle – Soviet shuttle



Semi-manned – manned as space stations or part of space stations




  • Progress – unmanned USSR/Russia cargo spacecraft


  • TKS – unmanned USSR/Russia cargo spacecraft and space station module


  • Automated Transfer Vehicle (ATV) – unmanned European cargo spacecraft


  • H-II Transfer Vehicle (HTV) – unmanned Japanese cargo spacecraft


  • SpaceX Dragon – unmanned private spacecraft


  • Tianzhou 1 (spacecraft) – China's unmanned spacecraft



Earth-orbit satellites




  • Explorer 1 – first US satellite


  • Project SCORE – first communications satellite


  • Solar and Heliospheric Observatory (SOHO) - orbits the Sun near L1


  • Sputnik 1 – world's first artificial satellite


  • Sputnik 2 – first animal in orbit (Laika)


  • Korabl-Sputnik 2 – first capsule recovered from orbit (Vostok precursor) – animals survived


  • Syncom – first geosynchronous communications satellite


  • Hubble Space Telescope – largest orbital observatory


  • X-37 – spaceplane



Lunar probes




  • Clementine – US Navy mission, orbited Moon, detected hydrogen at the poles


  • Kaguya JPN – lunar orbiter


  • Luna 1 – first lunar flyby


  • Luna 2 – first lunar impact


  • Luna 3 – first images of lunar far side


  • Luna 9 – first soft landing on the Moon


  • Luna 10 – first lunar orbiter


  • Luna 16 – first unmanned lunar sample retrieval


  • Lunar Orbiter – very successful series of lunar mapping spacecraft


  • Lunar Prospector – confirmed detection of hydrogen at the lunar poles


  • Lunar Reconnaissance Orbiter – Identifies safe landing sites and locates Moon resources


  • Lunokhod - Soviet lunar rovers


  • SMART-1 ESA – Lunar Impact


  • Surveyor – USA's first soft lander


  • Chang'e 1 – China's Chang'e lunar mission


  • Chang'e 2 – China's Chang'e lunar mission


  • Chang'e 3 – China's Chang'e lunar mission


  • Chandrayaan 1 – first Indian Lunar mission




Artist's conception of Cassini–Huygens as it enters Saturn's orbit




Artist's conception of the Phoenix spacecraft as it lands on Mars



Planetary probes




  • Akatsuki JPN – a Venus orbiter


  • Cassini–Huygens – first Saturn orbiter and Titan lander


  • Curiosity – Rover sent to Mars by NASA in 2012


  • Galileo – first Jupiter orbiter and descent probe


  • IKAROS JPN – first solar-sail spacecraft


  • Mariner 4 – first Mars flyby, first close and high resolution images of Mars


  • Mariner 9 – first Mars orbiter


  • Mariner 10 – first Mercury flyby, first close up images


  • Mars Exploration Rovers (Spirit and Opportunity)– Mars rovers


  • Mars Express – Mars orbiter


  • Mars Global Surveyor – Mars orbiter


  • Mars Orbiter Mission (Mangalyaan) - India's first Interplanetary probe


  • Mars Reconnaissance Orbiter – an advanced climate, imaging, sub-surface radar, and telecommunications Mars orbiter


  • MESSENGER – first Mercury orbiter (arrival 2011)


  • Mars Pathfinder – Mars lander, carrying the Sojourner rover


  • New Horizons – first Pluto flyby (arrival 2015)


  • Pioneer 10 – first Jupiter flyby, first close up images


  • Pioneer 11 – second Jupiter flyby and first Saturn flyby (first close up images of Saturn)


  • Pioneer Venus – first Venus orbiter and landers


  • Vega 1 – Balloon release into Venus atmosphere and lander (joint mission with Vega 2), mothership continued on to fly by Halley's Comet[citation needed]


  • Venera 4 – first soft landing on another planet (Venus)


  • Viking 1 – first soft landing on Mars


  • Voyager 2 – Jupiter flyby, Saturn flyby, and first flybys/images of Neptune and Uranus



Other – deep space




  • Cluster

  • Deep Space 1

  • Deep Impact

  • Genesis

  • Hayabusa

  • Near Earth Asteroid Rendezvous

  • Stardust


  • STEREO – Heliospheric and solar sensing; first images of the entire Sun

  • WMAP



Fastest spacecraft



  • Parker Solar Probe (estimated 343,000 km/h or 213,000 mph at first sun close pass, will reach 700,000 km/h or 430,000 mph at final perihelion)[12]


  • Helios I and II Solar Probes (252,792 km/h or 157,078 mph)


Furthest spacecraft from the Sun



  • Voyager 1 at 144.20 AU as of December 2018, traveling outward at about 3.58 AU/year[13]


  • Pioneer 10 at 122.48 AU as of December 2018, traveling outward at about 2.52 AU/year[13]



  • Voyager 2 at 119.34 AU as of December 2018, traveling outward at about 3.24 AU/year[13]


  • Pioneer 11 at 101.17 AU as of December 2018, traveling outward at about 2.37 AU/year[13]



Unfunded and canceled programs




The first test flight of the Delta Clipper-Experimental Advanced (DC-XA), a prototype launch system



Manned spacecraft



  • Chinese Shuguang capsule

  • Soviet Soyuz Kontakt capsule

  • Soviet Almaz space station

  • US Manned Orbiting Laboratory space station

  • US Altair lunar lander



Multi-stage spaceplanes



  • US X-20 spaceplane

  • Soviet Spiral shuttle

  • Soviet/Russian Buran-class shuttle

  • ESA Hermes shuttle


  • Kliper Russian semi-shuttle/semi-capsule

  • Japanese HOPE-X shuttle

  • Chinese Shuguang Project 921-3 shuttle



SSTO spaceplanes



  • RR/British Aerospace HOTOL

  • ESA Hopper Orbiter

  • US DC-X (Delta Clipper)

  • US Roton Rotored-Hybrid

  • US VentureStar



Spacecraft under development




The Orion spacecraft



Manned



  • (US-NASA) Orion Multi-Purpose Crew Vehicle – capsule

  • (US-SpaceX) Dragon V2 – capsule

  • (US-Boeing) CST-100 – capsule

  • (US-Sierra Nevada Corporation) Dream Chaser – orbital spaceplane

  • (US-The SpaceShip company) SpaceShipTwo suborbital spaceplane

  • (US-Blue Origin) New Shepard – VTVL capsule

  • (US-XCOR) Lynx rocketplane – suborbital spaceplane

  • China Shenzhou spacecraft Cargo

  • (India-DRDO) Avatar RLV -Under development, First demonstration flight planned in 2015.[14]

  • (India-ISRO) Gaganyaan – capsule

  • (India-ISRO) RLV Technology Demonstration Programme - Spacecraft


  • SpaceX reusable rocket (BFR)

  • (Russia-RKA) Prospective Piloted Transport System (PPTS) – capsule

  • (Europe-ESA) Advanced Crew Transportation System – capsule

  • (Iranian Space Agency) Orbital Vehicle – capsule



Unmanned



  • ESA & JAXA BepiColombo - Planetary Probe to Mercury

  • China Shenzhou (spacecraft) Cargo


  • CNES Mars Netlander


  • Orbital Sciences Cygnus – cargo delivery to the ISS


  • Darwin14 ESA probe


  • James Webb Space Telescope (delayed)


  • Mars 2020 rover

  • Reaction Engines Limited

  • Skylon


  • SpaceX Dragon – cargo delivery to the ISS


  • StarChip and Sprites - miniaturized interstellar spacecraft


  • System F6—a DARPA Fractionated Spacecraft demonstrator


  • Terrestrial Planet Finder cancelled probe



Subsystems


A spacecraft system comprises various subsystems, depending on the mission profile. Spacecraft subsystems comprise the spacecraft's "bus" and may include attitude determination and control (variously called ADAC, ADC, or ACS), guidance, navigation and control (GNC or GN&C), communications (comms), command and data handling (CDH or C&DH), power (EPS), thermal control (TCS), propulsion, and structures. Attached to the bus are typically payloads.



Life support

Spacecraft intended for human spaceflight must also include a life support system for the crew.





Reaction control system thrusters on the front of the U.S. Space Shuttle



Attitude control

A Spacecraft needs an attitude control subsystem to be correctly oriented in space and respond to external torques and forces properly. The attitude control subsystem consists of sensors and actuators, together with controlling algorithms. The attitude-control subsystem permits proper pointing for the science objective, sun pointing for power to the solar arrays and earth pointing for communications.



GNC

Guidance refers to the calculation of the commands (usually done by the CDH subsystem) needed to steer the spacecraft where it is desired to be. Navigation means determining a spacecraft's orbital elements or position. Control means adjusting the path of the spacecraft to meet mission requirements.



Command and data handling

The CDH subsystem receives commands from the communications subsystem, performs validation and decoding of the commands, and distributes the commands to the appropriate spacecraft subsystems and components. The CDH also receives housekeeping data and science data from the other spacecraft subsystems and components, and packages the data for storage on a data recorder or transmission to the ground via the communications subsystem. Other functions of the CDH include maintaining the spacecraft clock and state-of-health monitoring.




Communications

Spacecraft, both robotic and crewed, utilize various communications systems for communication with terrestrial stations as well as for communication between spacecraft in space. Technologies utilized include RF and optical communication. In addition, some spacecraft payloads are explicitly for the purpose of ground–ground communication using receiver/retransmitter electronic technologies.



Power

Spacecraft need an electrical power generation and distribution subsystem for powering the various spacecraft subsystems. For spacecraft near the Sun, solar panels are frequently used to generate electrical power. Spacecraft designed to operate in more distant locations, for example Jupiter, might employ a radioisotope thermoelectric generator (RTG) to generate electrical power. Electrical power is sent through power conditioning equipment before it passes through a power distribution unit over an electrical bus to other spacecraft components. Batteries are typically connected to the bus via a battery charge regulator, and the batteries are used to provide electrical power during periods when primary power is not available, for example when a low Earth orbit spacecraft is eclipsed by Earth.



Thermal control

Spacecraft must be engineered to withstand transit through Earth's atmosphere and the space environment. They must operate in a vacuum with temperatures potentially ranging across hundreds of degrees Celsius as well as (if subject to reentry) in the presence of plasmas. Material requirements are such that either high melting temperature, low density materials such as beryllium and reinforced carbon–carbon or (possibly due to the lower thickness requirements despite its high density) tungsten or ablative carbon–carbon composites are used. Depending on mission profile, spacecraft may also need to operate on the surface of another planetary body. The thermal control subsystem can be passive, dependent on the selection of materials with specific radiative properties. Active thermal control makes use of electrical heaters and certain actuators such as louvers to control temperature ranges of equipments within specific ranges.



Spacecraft propulsion

Spacecraft may or may not have a propulsion subsystem, depending on whether or not the mission profile calls for propulsion. The Swift spacecraft is an example of a spacecraft that does not have a propulsion subsystem. Typically though, LEO spacecraft include a propulsion subsystem for altitude adjustments (drag make-up maneuvers) and inclination adjustment maneuvers. A propulsion system is also needed for spacecraft that perform momentum management maneuvers. Components of a conventional propulsion subsystem include fuel, tankage, valves, pipes, and thrusters. The thermal control system interfaces with the propulsion subsystem by monitoring the temperature of those components, and by preheating tanks and thrusters in preparation for a spacecraft maneuver.



Structures

Spacecraft must be engineered to withstand launch loads imparted by the launch vehicle, and must have a point of attachment for all the other subsystems. Depending on mission profile, the structural subsystem might need to withstand loads imparted by entry into the atmosphere of another planetary body, and landing on the surface of another planetary body.



Payload

The payload depends on the mission of the spacecraft, and is typically regarded as the part of the spacecraft "that pays the bills". Typical payloads could include scientific instruments (cameras, telescopes, or particle detectors, for example), cargo, or a human crew.


Ground segment


The ground segment, though not technically part of the spacecraft, is vital to the operation of the spacecraft. Typical components of a ground segment in use during normal operations include a mission operations facility where the flight operations team conducts the operations of the spacecraft, a data processing and storage facility, ground stations to radiate signals to and receive signals from the spacecraft, and a voice and data communications network to connect all mission elements.[15]


Launch vehicle

The launch vehicle propels the spacecraft from Earth's surface, through the atmosphere, and into an orbit, the exact orbit being dependent on the mission configuration. The launch vehicle may be expendable or reusable.



See also













References


Notes





  1. ^ Adams, Sam (29 August 2016). "Taiwanese navy fires NUCLEAR MISSILE at fisherman during horrifying accident"..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ "At Mach-10, Taiwan's Hsiung Feng-III 'Anti-China' Missiles could be faster than the BrahMos". defencenews.in. Archived from the original on 2017-08-07. Retrieved 2019-01-08.


  3. ^ "Taiwanese navy sinks fishing boat with hypersonic missile fired BY MISTAKE as tensions rise". 2 September 2016.


  4. ^ Villasanta, Arthur Dominic (21 October 2016). "Taiwan Extending the Range of its Hsiung Feng III Missiles to Reach China".


  5. ^ News, Taiwan. "Taiwan's upgraded 'Cloud Peak' mi... - Taiwan News".


  6. ^ "Taiwan To Upgrade 'Cloud Peak' Medium-range Missiles For Micro-Satellites Launch". www.defenseworld.net.


  7. ^ Sheldon, John. "Taiwan's New Ballistic Missile Capable of Launching Microsatellites - SpaceWatch.Global". spacewatch.global.


  8. ^ Peenemünde (Dokumentation) Berlin: Moewig, 1984.
    ISBN 3-8118-4341-9.



  9. ^ Dougall, Walter A. (Winter 2010) "Shooting the duck",[permanent dead link]American Heritage


  10. ^ Swenson, L. Jr.; Grimwood, J. M.; Alexander, C. C. This New Ocean, A History of Project Mercury. pp. 66–62424. On October 4, 1957 Sputnik I shot into orbit and forcibly opened the Space Age.


  11. ^ "Vostok". Encyclopedia Astronautica. Archived from the original on 2011-06-29.


  12. ^ Bartels, Meghan; November 6, Space com Senior Writer |; ET, 2018 07:00am. "NASA's Parker Solar Probe Just Made Its First Close Pass by the Sun!". Space.com. Retrieved 2018-12-16.


  13. ^ abcd "Spacecraft escaping the Solar System". www.heavens-above.com. Retrieved 2018-12-16.


  14. ^ "Wednesday, August 03, 2011India's Space Shuttle [Reusable Launch Vehicle (RLV)] program". AA Me, IN. 2011. Archived from the original on October 22, 2014. Retrieved 2014-10-22.


  15. ^ "The Rosetta ground segment". ESA.int. 2004-02-17. Archived from the original on 2008-03-11. Retrieved 2008-02-11.



Bibliography




  • Knight, Will (January 23, 2006). "Spacecraft skin 'heals' itself". New Scientist. Retrieved February 11, 2008.


  • Wertz, James; Larson, Wiley J (1999). Space Mission Analysis and Design (3rd ed.). Torrance, California: Microcosm. ISBN 978-1-881883-10-4.



External links




  • NASA: Space Science Spacecraft Missions

  • NSSDC Master Catalog Spacecraft Query Form

  • Early History of Spacecraft

  • Basics of Spaceflight tutorial from JPL/Caltech

  • International Spaceflight Museum










Popular posts from this blog

Florida Star v. B. J. F.

Danny Elfman

Lugert, Oklahoma