Writing multivariate objective function, with matrix data entities
up vote
0
down vote
favorite
S1=[20 32 44 56 68 80 92 104 116 128 140 152 164 176 188 200];
P=[16.82 26.93 37.01 47.1 57.21 67.32 77.41 87.5 97.54 107.7 117.8 127.9 138 148 158.2 168.3];
X = [0.119 0.191 0.262 0.334 0.405 0.477 0.548 0.620 0.691 0.763 0.835 0.906 0.978 1.049 1.120 1.192];
S = [2.3734 3.6058 5.0256 6.6854 8.6413 10.978 13.897 17.396 21.971 28.040 36.475 49.065 69.736 110.20 224.69 2779.1];
objective=@(x)((1250*x(3)*S(a)-(S(a)+x(2))*(P(a)+x(1)))/(1250*(S(a)+x(2))*(P(a)+x(1)))-x(5))^2+((x(2)*(P(a)^2+x(1)*P(a)))/(1250*x(4)*X(a)*x(3)-P(a)^2-x(1)*P(a))-S(a))^2+(74000/3*((X(a)*x(3)*S(a))/S1(a)*(S(a)+x(2)))-P(a))^2
%x0 = [Kp Ks mu.m Yp mu.d]
x0=[7.347705469 14.88611028 1.19747242 16.65696429 6.01E-03];
x=fminunc(objective,x0);
disp(x)
The code above is used for optimisizing the objective function, so that all the unknown values of the parameters can be found. As you may have seen, the objective function consists of 4 variables (S1, S, P, X), each having 16 data entities. My question is: how to create an objective function, so that all the data entities are utilised?
The final objective function has to be the sum of the objective function (shown above) with a=1:16. Any ideas?
octave
add a comment |
up vote
0
down vote
favorite
S1=[20 32 44 56 68 80 92 104 116 128 140 152 164 176 188 200];
P=[16.82 26.93 37.01 47.1 57.21 67.32 77.41 87.5 97.54 107.7 117.8 127.9 138 148 158.2 168.3];
X = [0.119 0.191 0.262 0.334 0.405 0.477 0.548 0.620 0.691 0.763 0.835 0.906 0.978 1.049 1.120 1.192];
S = [2.3734 3.6058 5.0256 6.6854 8.6413 10.978 13.897 17.396 21.971 28.040 36.475 49.065 69.736 110.20 224.69 2779.1];
objective=@(x)((1250*x(3)*S(a)-(S(a)+x(2))*(P(a)+x(1)))/(1250*(S(a)+x(2))*(P(a)+x(1)))-x(5))^2+((x(2)*(P(a)^2+x(1)*P(a)))/(1250*x(4)*X(a)*x(3)-P(a)^2-x(1)*P(a))-S(a))^2+(74000/3*((X(a)*x(3)*S(a))/S1(a)*(S(a)+x(2)))-P(a))^2
%x0 = [Kp Ks mu.m Yp mu.d]
x0=[7.347705469 14.88611028 1.19747242 16.65696429 6.01E-03];
x=fminunc(objective,x0);
disp(x)
The code above is used for optimisizing the objective function, so that all the unknown values of the parameters can be found. As you may have seen, the objective function consists of 4 variables (S1, S, P, X), each having 16 data entities. My question is: how to create an objective function, so that all the data entities are utilised?
The final objective function has to be the sum of the objective function (shown above) with a=1:16. Any ideas?
octave
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
S1=[20 32 44 56 68 80 92 104 116 128 140 152 164 176 188 200];
P=[16.82 26.93 37.01 47.1 57.21 67.32 77.41 87.5 97.54 107.7 117.8 127.9 138 148 158.2 168.3];
X = [0.119 0.191 0.262 0.334 0.405 0.477 0.548 0.620 0.691 0.763 0.835 0.906 0.978 1.049 1.120 1.192];
S = [2.3734 3.6058 5.0256 6.6854 8.6413 10.978 13.897 17.396 21.971 28.040 36.475 49.065 69.736 110.20 224.69 2779.1];
objective=@(x)((1250*x(3)*S(a)-(S(a)+x(2))*(P(a)+x(1)))/(1250*(S(a)+x(2))*(P(a)+x(1)))-x(5))^2+((x(2)*(P(a)^2+x(1)*P(a)))/(1250*x(4)*X(a)*x(3)-P(a)^2-x(1)*P(a))-S(a))^2+(74000/3*((X(a)*x(3)*S(a))/S1(a)*(S(a)+x(2)))-P(a))^2
%x0 = [Kp Ks mu.m Yp mu.d]
x0=[7.347705469 14.88611028 1.19747242 16.65696429 6.01E-03];
x=fminunc(objective,x0);
disp(x)
The code above is used for optimisizing the objective function, so that all the unknown values of the parameters can be found. As you may have seen, the objective function consists of 4 variables (S1, S, P, X), each having 16 data entities. My question is: how to create an objective function, so that all the data entities are utilised?
The final objective function has to be the sum of the objective function (shown above) with a=1:16. Any ideas?
octave
S1=[20 32 44 56 68 80 92 104 116 128 140 152 164 176 188 200];
P=[16.82 26.93 37.01 47.1 57.21 67.32 77.41 87.5 97.54 107.7 117.8 127.9 138 148 158.2 168.3];
X = [0.119 0.191 0.262 0.334 0.405 0.477 0.548 0.620 0.691 0.763 0.835 0.906 0.978 1.049 1.120 1.192];
S = [2.3734 3.6058 5.0256 6.6854 8.6413 10.978 13.897 17.396 21.971 28.040 36.475 49.065 69.736 110.20 224.69 2779.1];
objective=@(x)((1250*x(3)*S(a)-(S(a)+x(2))*(P(a)+x(1)))/(1250*(S(a)+x(2))*(P(a)+x(1)))-x(5))^2+((x(2)*(P(a)^2+x(1)*P(a)))/(1250*x(4)*X(a)*x(3)-P(a)^2-x(1)*P(a))-S(a))^2+(74000/3*((X(a)*x(3)*S(a))/S1(a)*(S(a)+x(2)))-P(a))^2
%x0 = [Kp Ks mu.m Yp mu.d]
x0=[7.347705469 14.88611028 1.19747242 16.65696429 6.01E-03];
x=fminunc(objective,x0);
disp(x)
The code above is used for optimisizing the objective function, so that all the unknown values of the parameters can be found. As you may have seen, the objective function consists of 4 variables (S1, S, P, X), each having 16 data entities. My question is: how to create an objective function, so that all the data entities are utilised?
The final objective function has to be the sum of the objective function (shown above) with a=1:16. Any ideas?
octave
octave
asked Nov 10 at 17:17
User998nn00
1
1
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
Make the following changes to your code:
Replace, e.g. all
S(a)
variables withS
to use the whole vector. Do the same for each of your four variables.Convert all 'scalar' operations in your objective function to 'elementwise' ones, i.e. replace
^
,*
and/
with.^
,.*
and./
. This produces 16 values, one for each index from 1 to 16 (i.e. what was previously referred to bya
).wrap the resulting expression into a
sum()
function to sum the 16 results into a final valueUse your optimiser as normal.
Resulting code:
S1 = [20 32 44 56 68 80 92 104 116 128 140 152 164 176 188 200];
P = [16.82 26.93 37.01 47.1 57.21 67.32 77.41 87.5 97.54 107.7 117.8 127.9 138 148 158.2 168.3];
X = [0.119 0.191 0.262 0.334 0.405 0.477 0.548 0.620 0.691 0.763 0.835 0.906 0.978 1.049 1.120 1.192];
S = [2.3734 3.6058 5.0256 6.6854 8.6413 10.978 13.897 17.396 21.971 28.040 36.475 49.065 69.736 110.20 224.69 2779.1];
objective = @(x) sum( ((1250.*x(3).*S-(S+x(2)).*(P+x(1)))./(1250.*(S+x(2)).*(P+x(1)))-x(5)).^2+((x(2).*(P.^2+x(1).*P))./(1250.*x(4).*X.*x(3)-P.^2-x(1).*P)-S).^2+(74000./3.*((X.*x(3).*S)./S1.*(S+x(2)))-P).^2 );
%x0 = [Kp Ks mu.m Yp mu.d]
x0 = [7.347705469 14.88611028 1.19747242 16.65696429 6.01E-03];
x = fminunc(objective,x0);
disp(x)
Note that you can make this code a lot clearer to read for humans; I just made the "direct" changes that illustrate conversion from your scalar expression to the desired vectorised one.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
Make the following changes to your code:
Replace, e.g. all
S(a)
variables withS
to use the whole vector. Do the same for each of your four variables.Convert all 'scalar' operations in your objective function to 'elementwise' ones, i.e. replace
^
,*
and/
with.^
,.*
and./
. This produces 16 values, one for each index from 1 to 16 (i.e. what was previously referred to bya
).wrap the resulting expression into a
sum()
function to sum the 16 results into a final valueUse your optimiser as normal.
Resulting code:
S1 = [20 32 44 56 68 80 92 104 116 128 140 152 164 176 188 200];
P = [16.82 26.93 37.01 47.1 57.21 67.32 77.41 87.5 97.54 107.7 117.8 127.9 138 148 158.2 168.3];
X = [0.119 0.191 0.262 0.334 0.405 0.477 0.548 0.620 0.691 0.763 0.835 0.906 0.978 1.049 1.120 1.192];
S = [2.3734 3.6058 5.0256 6.6854 8.6413 10.978 13.897 17.396 21.971 28.040 36.475 49.065 69.736 110.20 224.69 2779.1];
objective = @(x) sum( ((1250.*x(3).*S-(S+x(2)).*(P+x(1)))./(1250.*(S+x(2)).*(P+x(1)))-x(5)).^2+((x(2).*(P.^2+x(1).*P))./(1250.*x(4).*X.*x(3)-P.^2-x(1).*P)-S).^2+(74000./3.*((X.*x(3).*S)./S1.*(S+x(2)))-P).^2 );
%x0 = [Kp Ks mu.m Yp mu.d]
x0 = [7.347705469 14.88611028 1.19747242 16.65696429 6.01E-03];
x = fminunc(objective,x0);
disp(x)
Note that you can make this code a lot clearer to read for humans; I just made the "direct" changes that illustrate conversion from your scalar expression to the desired vectorised one.
add a comment |
up vote
0
down vote
Make the following changes to your code:
Replace, e.g. all
S(a)
variables withS
to use the whole vector. Do the same for each of your four variables.Convert all 'scalar' operations in your objective function to 'elementwise' ones, i.e. replace
^
,*
and/
with.^
,.*
and./
. This produces 16 values, one for each index from 1 to 16 (i.e. what was previously referred to bya
).wrap the resulting expression into a
sum()
function to sum the 16 results into a final valueUse your optimiser as normal.
Resulting code:
S1 = [20 32 44 56 68 80 92 104 116 128 140 152 164 176 188 200];
P = [16.82 26.93 37.01 47.1 57.21 67.32 77.41 87.5 97.54 107.7 117.8 127.9 138 148 158.2 168.3];
X = [0.119 0.191 0.262 0.334 0.405 0.477 0.548 0.620 0.691 0.763 0.835 0.906 0.978 1.049 1.120 1.192];
S = [2.3734 3.6058 5.0256 6.6854 8.6413 10.978 13.897 17.396 21.971 28.040 36.475 49.065 69.736 110.20 224.69 2779.1];
objective = @(x) sum( ((1250.*x(3).*S-(S+x(2)).*(P+x(1)))./(1250.*(S+x(2)).*(P+x(1)))-x(5)).^2+((x(2).*(P.^2+x(1).*P))./(1250.*x(4).*X.*x(3)-P.^2-x(1).*P)-S).^2+(74000./3.*((X.*x(3).*S)./S1.*(S+x(2)))-P).^2 );
%x0 = [Kp Ks mu.m Yp mu.d]
x0 = [7.347705469 14.88611028 1.19747242 16.65696429 6.01E-03];
x = fminunc(objective,x0);
disp(x)
Note that you can make this code a lot clearer to read for humans; I just made the "direct" changes that illustrate conversion from your scalar expression to the desired vectorised one.
add a comment |
up vote
0
down vote
up vote
0
down vote
Make the following changes to your code:
Replace, e.g. all
S(a)
variables withS
to use the whole vector. Do the same for each of your four variables.Convert all 'scalar' operations in your objective function to 'elementwise' ones, i.e. replace
^
,*
and/
with.^
,.*
and./
. This produces 16 values, one for each index from 1 to 16 (i.e. what was previously referred to bya
).wrap the resulting expression into a
sum()
function to sum the 16 results into a final valueUse your optimiser as normal.
Resulting code:
S1 = [20 32 44 56 68 80 92 104 116 128 140 152 164 176 188 200];
P = [16.82 26.93 37.01 47.1 57.21 67.32 77.41 87.5 97.54 107.7 117.8 127.9 138 148 158.2 168.3];
X = [0.119 0.191 0.262 0.334 0.405 0.477 0.548 0.620 0.691 0.763 0.835 0.906 0.978 1.049 1.120 1.192];
S = [2.3734 3.6058 5.0256 6.6854 8.6413 10.978 13.897 17.396 21.971 28.040 36.475 49.065 69.736 110.20 224.69 2779.1];
objective = @(x) sum( ((1250.*x(3).*S-(S+x(2)).*(P+x(1)))./(1250.*(S+x(2)).*(P+x(1)))-x(5)).^2+((x(2).*(P.^2+x(1).*P))./(1250.*x(4).*X.*x(3)-P.^2-x(1).*P)-S).^2+(74000./3.*((X.*x(3).*S)./S1.*(S+x(2)))-P).^2 );
%x0 = [Kp Ks mu.m Yp mu.d]
x0 = [7.347705469 14.88611028 1.19747242 16.65696429 6.01E-03];
x = fminunc(objective,x0);
disp(x)
Note that you can make this code a lot clearer to read for humans; I just made the "direct" changes that illustrate conversion from your scalar expression to the desired vectorised one.
Make the following changes to your code:
Replace, e.g. all
S(a)
variables withS
to use the whole vector. Do the same for each of your four variables.Convert all 'scalar' operations in your objective function to 'elementwise' ones, i.e. replace
^
,*
and/
with.^
,.*
and./
. This produces 16 values, one for each index from 1 to 16 (i.e. what was previously referred to bya
).wrap the resulting expression into a
sum()
function to sum the 16 results into a final valueUse your optimiser as normal.
Resulting code:
S1 = [20 32 44 56 68 80 92 104 116 128 140 152 164 176 188 200];
P = [16.82 26.93 37.01 47.1 57.21 67.32 77.41 87.5 97.54 107.7 117.8 127.9 138 148 158.2 168.3];
X = [0.119 0.191 0.262 0.334 0.405 0.477 0.548 0.620 0.691 0.763 0.835 0.906 0.978 1.049 1.120 1.192];
S = [2.3734 3.6058 5.0256 6.6854 8.6413 10.978 13.897 17.396 21.971 28.040 36.475 49.065 69.736 110.20 224.69 2779.1];
objective = @(x) sum( ((1250.*x(3).*S-(S+x(2)).*(P+x(1)))./(1250.*(S+x(2)).*(P+x(1)))-x(5)).^2+((x(2).*(P.^2+x(1).*P))./(1250.*x(4).*X.*x(3)-P.^2-x(1).*P)-S).^2+(74000./3.*((X.*x(3).*S)./S1.*(S+x(2)))-P).^2 );
%x0 = [Kp Ks mu.m Yp mu.d]
x0 = [7.347705469 14.88611028 1.19747242 16.65696429 6.01E-03];
x = fminunc(objective,x0);
disp(x)
Note that you can make this code a lot clearer to read for humans; I just made the "direct" changes that illustrate conversion from your scalar expression to the desired vectorised one.
edited Nov 10 at 19:20
answered Nov 10 at 19:13
Tasos Papastylianou
10.6k1931
10.6k1931
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53241470%2fwriting-multivariate-objective-function-with-matrix-data-entities%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown