Load pretrained model for training while changing optimizer
In short, when I restore my pretrained model, i wanna change the optimizer to AdamOptimizer
for further training. However, it strikes to me that it rise error like below:
NotFoundError (see above for traceback): Key beta1_power not found in checkpoint
[[Node: save_1/RestoreV2 = RestoreV2[dtypes=[DT_FLOAT, DT_FLOAT, DT_INT32, DT_FLOAT, DT_FLOAT, ..., DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"](_arg_save_1/Const_0_0, save_1/RestoreV2/tensor_names, save_1/RestoreV2/shape_and_slices)]]
I just assumed that the corresponding variables could be add to computational graph automatically without human intervention just like tf.get_variable
do.
The code I use is below:
# 0. only 1 gpu
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# 1. define global parameters
args = get_parser()
global_step = tf.Variable(name='global_step', initial_value=0, trainable=False)
inc_op = tf.assign_add(global_step, 1, name='increment_global_step')
images = tf.placeholder(name='img_inputs', shape=[None, *args.image_size, 3], dtype=tf.float32)
labels = tf.placeholder(name='img_labels', shape=[None, ], dtype=tf.int64)
dropout_rate = tf.placeholder(name='dropout_rate', dtype=tf.float32)
# 2 prepare train datasets and test datasets by using tensorflow dataset api
# 2.1 train datasets
tfrecords_f = os.path.join(args.tfrecords_file_path, 'tran_asia.tfrecords')
dataset = tf.data.TFRecordDataset(tfrecords_f)
dataset = dataset.map(parse_function)
dataset = dataset.shuffle(buffer_size=args.buffer_size)
dataset = dataset.batch(args.batch_size)
iterator = dataset.make_initializable_iterator()
next_element = iterator.get_next()
# 3. define network, loss, optimize method, learning rate schedule, summary writer, saver
# 3.1 inference phase
w_init_method = tf.contrib.layers.xavier_initializer(uniform=False)
net = get_resnet(...)
# 3.2 loss
logit = self_define_loss(embedding=net.outputs, labels=labels, w_init=w_init_method, out_num=args.num_output)
...
# 3.3 calculate loss
infer_loss = ...
# 3.4 optimizer(change after pretrained)
# stage1
# opt = tf.train.MomentumOptimizer(learning_rate=lr, momentum=args.momentum)
# stage2
opt = tf.train.AdamOptimizer(learning_rate=lr)
# 3.5 get train op
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = opt.apply_gradients(grads, global_step=global_step)
# 4.restore stage1 model
# 4.1 saver
saver = tf.train.Saver(max_to_keep=10)
# 4.2 init all variables
sess.run(tf.global_variables_initializer())
# 4.3 restore stage1 model and change optimizer to do further training!
restore_saver = tf.train.Saver()
restore_saver.restore(sess, 'xxx.ckpt')
# Omit training part
...
The Tensorflow version i use is 1.7.0, really appreciate for your kindness help, Thanks you!
python tensorflow optimization
add a comment |
In short, when I restore my pretrained model, i wanna change the optimizer to AdamOptimizer
for further training. However, it strikes to me that it rise error like below:
NotFoundError (see above for traceback): Key beta1_power not found in checkpoint
[[Node: save_1/RestoreV2 = RestoreV2[dtypes=[DT_FLOAT, DT_FLOAT, DT_INT32, DT_FLOAT, DT_FLOAT, ..., DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"](_arg_save_1/Const_0_0, save_1/RestoreV2/tensor_names, save_1/RestoreV2/shape_and_slices)]]
I just assumed that the corresponding variables could be add to computational graph automatically without human intervention just like tf.get_variable
do.
The code I use is below:
# 0. only 1 gpu
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# 1. define global parameters
args = get_parser()
global_step = tf.Variable(name='global_step', initial_value=0, trainable=False)
inc_op = tf.assign_add(global_step, 1, name='increment_global_step')
images = tf.placeholder(name='img_inputs', shape=[None, *args.image_size, 3], dtype=tf.float32)
labels = tf.placeholder(name='img_labels', shape=[None, ], dtype=tf.int64)
dropout_rate = tf.placeholder(name='dropout_rate', dtype=tf.float32)
# 2 prepare train datasets and test datasets by using tensorflow dataset api
# 2.1 train datasets
tfrecords_f = os.path.join(args.tfrecords_file_path, 'tran_asia.tfrecords')
dataset = tf.data.TFRecordDataset(tfrecords_f)
dataset = dataset.map(parse_function)
dataset = dataset.shuffle(buffer_size=args.buffer_size)
dataset = dataset.batch(args.batch_size)
iterator = dataset.make_initializable_iterator()
next_element = iterator.get_next()
# 3. define network, loss, optimize method, learning rate schedule, summary writer, saver
# 3.1 inference phase
w_init_method = tf.contrib.layers.xavier_initializer(uniform=False)
net = get_resnet(...)
# 3.2 loss
logit = self_define_loss(embedding=net.outputs, labels=labels, w_init=w_init_method, out_num=args.num_output)
...
# 3.3 calculate loss
infer_loss = ...
# 3.4 optimizer(change after pretrained)
# stage1
# opt = tf.train.MomentumOptimizer(learning_rate=lr, momentum=args.momentum)
# stage2
opt = tf.train.AdamOptimizer(learning_rate=lr)
# 3.5 get train op
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = opt.apply_gradients(grads, global_step=global_step)
# 4.restore stage1 model
# 4.1 saver
saver = tf.train.Saver(max_to_keep=10)
# 4.2 init all variables
sess.run(tf.global_variables_initializer())
# 4.3 restore stage1 model and change optimizer to do further training!
restore_saver = tf.train.Saver()
restore_saver.restore(sess, 'xxx.ckpt')
# Omit training part
...
The Tensorflow version i use is 1.7.0, really appreciate for your kindness help, Thanks you!
python tensorflow optimization
add a comment |
In short, when I restore my pretrained model, i wanna change the optimizer to AdamOptimizer
for further training. However, it strikes to me that it rise error like below:
NotFoundError (see above for traceback): Key beta1_power not found in checkpoint
[[Node: save_1/RestoreV2 = RestoreV2[dtypes=[DT_FLOAT, DT_FLOAT, DT_INT32, DT_FLOAT, DT_FLOAT, ..., DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"](_arg_save_1/Const_0_0, save_1/RestoreV2/tensor_names, save_1/RestoreV2/shape_and_slices)]]
I just assumed that the corresponding variables could be add to computational graph automatically without human intervention just like tf.get_variable
do.
The code I use is below:
# 0. only 1 gpu
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# 1. define global parameters
args = get_parser()
global_step = tf.Variable(name='global_step', initial_value=0, trainable=False)
inc_op = tf.assign_add(global_step, 1, name='increment_global_step')
images = tf.placeholder(name='img_inputs', shape=[None, *args.image_size, 3], dtype=tf.float32)
labels = tf.placeholder(name='img_labels', shape=[None, ], dtype=tf.int64)
dropout_rate = tf.placeholder(name='dropout_rate', dtype=tf.float32)
# 2 prepare train datasets and test datasets by using tensorflow dataset api
# 2.1 train datasets
tfrecords_f = os.path.join(args.tfrecords_file_path, 'tran_asia.tfrecords')
dataset = tf.data.TFRecordDataset(tfrecords_f)
dataset = dataset.map(parse_function)
dataset = dataset.shuffle(buffer_size=args.buffer_size)
dataset = dataset.batch(args.batch_size)
iterator = dataset.make_initializable_iterator()
next_element = iterator.get_next()
# 3. define network, loss, optimize method, learning rate schedule, summary writer, saver
# 3.1 inference phase
w_init_method = tf.contrib.layers.xavier_initializer(uniform=False)
net = get_resnet(...)
# 3.2 loss
logit = self_define_loss(embedding=net.outputs, labels=labels, w_init=w_init_method, out_num=args.num_output)
...
# 3.3 calculate loss
infer_loss = ...
# 3.4 optimizer(change after pretrained)
# stage1
# opt = tf.train.MomentumOptimizer(learning_rate=lr, momentum=args.momentum)
# stage2
opt = tf.train.AdamOptimizer(learning_rate=lr)
# 3.5 get train op
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = opt.apply_gradients(grads, global_step=global_step)
# 4.restore stage1 model
# 4.1 saver
saver = tf.train.Saver(max_to_keep=10)
# 4.2 init all variables
sess.run(tf.global_variables_initializer())
# 4.3 restore stage1 model and change optimizer to do further training!
restore_saver = tf.train.Saver()
restore_saver.restore(sess, 'xxx.ckpt')
# Omit training part
...
The Tensorflow version i use is 1.7.0, really appreciate for your kindness help, Thanks you!
python tensorflow optimization
In short, when I restore my pretrained model, i wanna change the optimizer to AdamOptimizer
for further training. However, it strikes to me that it rise error like below:
NotFoundError (see above for traceback): Key beta1_power not found in checkpoint
[[Node: save_1/RestoreV2 = RestoreV2[dtypes=[DT_FLOAT, DT_FLOAT, DT_INT32, DT_FLOAT, DT_FLOAT, ..., DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"](_arg_save_1/Const_0_0, save_1/RestoreV2/tensor_names, save_1/RestoreV2/shape_and_slices)]]
I just assumed that the corresponding variables could be add to computational graph automatically without human intervention just like tf.get_variable
do.
The code I use is below:
# 0. only 1 gpu
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# 1. define global parameters
args = get_parser()
global_step = tf.Variable(name='global_step', initial_value=0, trainable=False)
inc_op = tf.assign_add(global_step, 1, name='increment_global_step')
images = tf.placeholder(name='img_inputs', shape=[None, *args.image_size, 3], dtype=tf.float32)
labels = tf.placeholder(name='img_labels', shape=[None, ], dtype=tf.int64)
dropout_rate = tf.placeholder(name='dropout_rate', dtype=tf.float32)
# 2 prepare train datasets and test datasets by using tensorflow dataset api
# 2.1 train datasets
tfrecords_f = os.path.join(args.tfrecords_file_path, 'tran_asia.tfrecords')
dataset = tf.data.TFRecordDataset(tfrecords_f)
dataset = dataset.map(parse_function)
dataset = dataset.shuffle(buffer_size=args.buffer_size)
dataset = dataset.batch(args.batch_size)
iterator = dataset.make_initializable_iterator()
next_element = iterator.get_next()
# 3. define network, loss, optimize method, learning rate schedule, summary writer, saver
# 3.1 inference phase
w_init_method = tf.contrib.layers.xavier_initializer(uniform=False)
net = get_resnet(...)
# 3.2 loss
logit = self_define_loss(embedding=net.outputs, labels=labels, w_init=w_init_method, out_num=args.num_output)
...
# 3.3 calculate loss
infer_loss = ...
# 3.4 optimizer(change after pretrained)
# stage1
# opt = tf.train.MomentumOptimizer(learning_rate=lr, momentum=args.momentum)
# stage2
opt = tf.train.AdamOptimizer(learning_rate=lr)
# 3.5 get train op
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = opt.apply_gradients(grads, global_step=global_step)
# 4.restore stage1 model
# 4.1 saver
saver = tf.train.Saver(max_to_keep=10)
# 4.2 init all variables
sess.run(tf.global_variables_initializer())
# 4.3 restore stage1 model and change optimizer to do further training!
restore_saver = tf.train.Saver()
restore_saver.restore(sess, 'xxx.ckpt')
# Omit training part
...
The Tensorflow version i use is 1.7.0, really appreciate for your kindness help, Thanks you!
python tensorflow optimization
python tensorflow optimization
edited Nov 15 '18 at 8:01
Andras Deak
21k64175
21k64175
asked Nov 15 '18 at 7:12
ko samuelko samuel
114
114
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53314159%2fload-pretrained-model-for-training-while-changing-optimizer%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53314159%2fload-pretrained-model-for-training-while-changing-optimizer%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown