Copying weights of a specific layer - keras
According to this the following copies weights from one model to another:
target_model.set_weights(model.get_weights())
What about copying the weights of a specific layer, would this work?
model_1.layers[0].set_weights(source_model.layers[0].get_weights())
model_2.layers[0].set_weights(source_model.layers[0].get_weights())
If I train model_1
and model_2
will they have separate weights? The documentation doesn't state whether if this get_weights
makes a deep copy or not. If this doesn't work, how can this be achieved?
python keras neural-network deep-learning keras-layer
add a comment |
According to this the following copies weights from one model to another:
target_model.set_weights(model.get_weights())
What about copying the weights of a specific layer, would this work?
model_1.layers[0].set_weights(source_model.layers[0].get_weights())
model_2.layers[0].set_weights(source_model.layers[0].get_weights())
If I train model_1
and model_2
will they have separate weights? The documentation doesn't state whether if this get_weights
makes a deep copy or not. If this doesn't work, how can this be achieved?
python keras neural-network deep-learning keras-layer
add a comment |
According to this the following copies weights from one model to another:
target_model.set_weights(model.get_weights())
What about copying the weights of a specific layer, would this work?
model_1.layers[0].set_weights(source_model.layers[0].get_weights())
model_2.layers[0].set_weights(source_model.layers[0].get_weights())
If I train model_1
and model_2
will they have separate weights? The documentation doesn't state whether if this get_weights
makes a deep copy or not. If this doesn't work, how can this be achieved?
python keras neural-network deep-learning keras-layer
According to this the following copies weights from one model to another:
target_model.set_weights(model.get_weights())
What about copying the weights of a specific layer, would this work?
model_1.layers[0].set_weights(source_model.layers[0].get_weights())
model_2.layers[0].set_weights(source_model.layers[0].get_weights())
If I train model_1
and model_2
will they have separate weights? The documentation doesn't state whether if this get_weights
makes a deep copy or not. If this doesn't work, how can this be achieved?
python keras neural-network deep-learning keras-layer
python keras neural-network deep-learning keras-layer
edited Nov 15 '18 at 7:39
today
11k22038
11k22038
asked Nov 15 '18 at 7:12
bones.felipebones.felipe
315312
315312
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Of course, it would be a copy of the weights. It does not make sense the weights object to be shared between two separate models. You can check it for yourself with a simple example like this:
model1 = Sequential()
model1.add(Dense(10, input_dim=2))
model2 = Sequential()
model2.add(Dense(10, input_dim=2))
model1.compile(loss='mse', optimizer='adam')
model2.compile(loss='mse', optimizer='adam')
Test:
>>> model1.layers[0].get_weights()
[array([[-0.42853734, 0.18648076, -0.47137827, 0.1792168 , 0.0373047 ,
0.2765705 , 0.38383502, 0.09664273, -0.4971757 , 0.41548246],
[ 0.0403192 , -0.01309097, 0.6656211 , -0.0536288 , 0.58677703,
0.21625364, 0.26447064, -0.42619988, 0.17218047, -0.39748642]],
dtype=float32),
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)]
>>> model2.layers[0].get_weights()
[array([[-0.30062824, -0.3740575 , -0.3502644 , 0.28050178, -0.68631136,
0.1596322 , 0.08288956, -0.20988202, 0.34323698, 0.2893324 ],
[-0.29182747, -0.2754455 , -0.64082885, 0.29160154, 0.04342002,
-0.4996035 , 0.6608283 , 0.10293472, 0.11375248, -0.43438092]],
dtype=float32),
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)]
>>> model2.layers[0].set_weights(model1.layers[0].get_weights())
>>> model2.layers[0].get_weights()
[array([[-0.42853734, 0.18648076, -0.47137827, 0.1792168 , 0.0373047 ,
0.2765705 , 0.38383502, 0.09664273, -0.4971757 , 0.41548246],
[ 0.0403192 , -0.01309097, 0.6656211 , -0.0536288 , 0.58677703,
0.21625364, 0.26447064, -0.42619988, 0.17218047, -0.39748642]],
dtype=float32),
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)]
>>> id(model1.layers[0].get_weights()[0])
140494823634144
>>> id(model2.layers[0].get_weights()[0])
140494823635664
The ids of kernel weights arrays are different so they are different objects, but with the same value.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53314152%2fcopying-weights-of-a-specific-layer-keras%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Of course, it would be a copy of the weights. It does not make sense the weights object to be shared between two separate models. You can check it for yourself with a simple example like this:
model1 = Sequential()
model1.add(Dense(10, input_dim=2))
model2 = Sequential()
model2.add(Dense(10, input_dim=2))
model1.compile(loss='mse', optimizer='adam')
model2.compile(loss='mse', optimizer='adam')
Test:
>>> model1.layers[0].get_weights()
[array([[-0.42853734, 0.18648076, -0.47137827, 0.1792168 , 0.0373047 ,
0.2765705 , 0.38383502, 0.09664273, -0.4971757 , 0.41548246],
[ 0.0403192 , -0.01309097, 0.6656211 , -0.0536288 , 0.58677703,
0.21625364, 0.26447064, -0.42619988, 0.17218047, -0.39748642]],
dtype=float32),
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)]
>>> model2.layers[0].get_weights()
[array([[-0.30062824, -0.3740575 , -0.3502644 , 0.28050178, -0.68631136,
0.1596322 , 0.08288956, -0.20988202, 0.34323698, 0.2893324 ],
[-0.29182747, -0.2754455 , -0.64082885, 0.29160154, 0.04342002,
-0.4996035 , 0.6608283 , 0.10293472, 0.11375248, -0.43438092]],
dtype=float32),
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)]
>>> model2.layers[0].set_weights(model1.layers[0].get_weights())
>>> model2.layers[0].get_weights()
[array([[-0.42853734, 0.18648076, -0.47137827, 0.1792168 , 0.0373047 ,
0.2765705 , 0.38383502, 0.09664273, -0.4971757 , 0.41548246],
[ 0.0403192 , -0.01309097, 0.6656211 , -0.0536288 , 0.58677703,
0.21625364, 0.26447064, -0.42619988, 0.17218047, -0.39748642]],
dtype=float32),
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)]
>>> id(model1.layers[0].get_weights()[0])
140494823634144
>>> id(model2.layers[0].get_weights()[0])
140494823635664
The ids of kernel weights arrays are different so they are different objects, but with the same value.
add a comment |
Of course, it would be a copy of the weights. It does not make sense the weights object to be shared between two separate models. You can check it for yourself with a simple example like this:
model1 = Sequential()
model1.add(Dense(10, input_dim=2))
model2 = Sequential()
model2.add(Dense(10, input_dim=2))
model1.compile(loss='mse', optimizer='adam')
model2.compile(loss='mse', optimizer='adam')
Test:
>>> model1.layers[0].get_weights()
[array([[-0.42853734, 0.18648076, -0.47137827, 0.1792168 , 0.0373047 ,
0.2765705 , 0.38383502, 0.09664273, -0.4971757 , 0.41548246],
[ 0.0403192 , -0.01309097, 0.6656211 , -0.0536288 , 0.58677703,
0.21625364, 0.26447064, -0.42619988, 0.17218047, -0.39748642]],
dtype=float32),
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)]
>>> model2.layers[0].get_weights()
[array([[-0.30062824, -0.3740575 , -0.3502644 , 0.28050178, -0.68631136,
0.1596322 , 0.08288956, -0.20988202, 0.34323698, 0.2893324 ],
[-0.29182747, -0.2754455 , -0.64082885, 0.29160154, 0.04342002,
-0.4996035 , 0.6608283 , 0.10293472, 0.11375248, -0.43438092]],
dtype=float32),
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)]
>>> model2.layers[0].set_weights(model1.layers[0].get_weights())
>>> model2.layers[0].get_weights()
[array([[-0.42853734, 0.18648076, -0.47137827, 0.1792168 , 0.0373047 ,
0.2765705 , 0.38383502, 0.09664273, -0.4971757 , 0.41548246],
[ 0.0403192 , -0.01309097, 0.6656211 , -0.0536288 , 0.58677703,
0.21625364, 0.26447064, -0.42619988, 0.17218047, -0.39748642]],
dtype=float32),
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)]
>>> id(model1.layers[0].get_weights()[0])
140494823634144
>>> id(model2.layers[0].get_weights()[0])
140494823635664
The ids of kernel weights arrays are different so they are different objects, but with the same value.
add a comment |
Of course, it would be a copy of the weights. It does not make sense the weights object to be shared between two separate models. You can check it for yourself with a simple example like this:
model1 = Sequential()
model1.add(Dense(10, input_dim=2))
model2 = Sequential()
model2.add(Dense(10, input_dim=2))
model1.compile(loss='mse', optimizer='adam')
model2.compile(loss='mse', optimizer='adam')
Test:
>>> model1.layers[0].get_weights()
[array([[-0.42853734, 0.18648076, -0.47137827, 0.1792168 , 0.0373047 ,
0.2765705 , 0.38383502, 0.09664273, -0.4971757 , 0.41548246],
[ 0.0403192 , -0.01309097, 0.6656211 , -0.0536288 , 0.58677703,
0.21625364, 0.26447064, -0.42619988, 0.17218047, -0.39748642]],
dtype=float32),
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)]
>>> model2.layers[0].get_weights()
[array([[-0.30062824, -0.3740575 , -0.3502644 , 0.28050178, -0.68631136,
0.1596322 , 0.08288956, -0.20988202, 0.34323698, 0.2893324 ],
[-0.29182747, -0.2754455 , -0.64082885, 0.29160154, 0.04342002,
-0.4996035 , 0.6608283 , 0.10293472, 0.11375248, -0.43438092]],
dtype=float32),
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)]
>>> model2.layers[0].set_weights(model1.layers[0].get_weights())
>>> model2.layers[0].get_weights()
[array([[-0.42853734, 0.18648076, -0.47137827, 0.1792168 , 0.0373047 ,
0.2765705 , 0.38383502, 0.09664273, -0.4971757 , 0.41548246],
[ 0.0403192 , -0.01309097, 0.6656211 , -0.0536288 , 0.58677703,
0.21625364, 0.26447064, -0.42619988, 0.17218047, -0.39748642]],
dtype=float32),
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)]
>>> id(model1.layers[0].get_weights()[0])
140494823634144
>>> id(model2.layers[0].get_weights()[0])
140494823635664
The ids of kernel weights arrays are different so they are different objects, but with the same value.
Of course, it would be a copy of the weights. It does not make sense the weights object to be shared between two separate models. You can check it for yourself with a simple example like this:
model1 = Sequential()
model1.add(Dense(10, input_dim=2))
model2 = Sequential()
model2.add(Dense(10, input_dim=2))
model1.compile(loss='mse', optimizer='adam')
model2.compile(loss='mse', optimizer='adam')
Test:
>>> model1.layers[0].get_weights()
[array([[-0.42853734, 0.18648076, -0.47137827, 0.1792168 , 0.0373047 ,
0.2765705 , 0.38383502, 0.09664273, -0.4971757 , 0.41548246],
[ 0.0403192 , -0.01309097, 0.6656211 , -0.0536288 , 0.58677703,
0.21625364, 0.26447064, -0.42619988, 0.17218047, -0.39748642]],
dtype=float32),
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)]
>>> model2.layers[0].get_weights()
[array([[-0.30062824, -0.3740575 , -0.3502644 , 0.28050178, -0.68631136,
0.1596322 , 0.08288956, -0.20988202, 0.34323698, 0.2893324 ],
[-0.29182747, -0.2754455 , -0.64082885, 0.29160154, 0.04342002,
-0.4996035 , 0.6608283 , 0.10293472, 0.11375248, -0.43438092]],
dtype=float32),
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)]
>>> model2.layers[0].set_weights(model1.layers[0].get_weights())
>>> model2.layers[0].get_weights()
[array([[-0.42853734, 0.18648076, -0.47137827, 0.1792168 , 0.0373047 ,
0.2765705 , 0.38383502, 0.09664273, -0.4971757 , 0.41548246],
[ 0.0403192 , -0.01309097, 0.6656211 , -0.0536288 , 0.58677703,
0.21625364, 0.26447064, -0.42619988, 0.17218047, -0.39748642]],
dtype=float32),
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)]
>>> id(model1.layers[0].get_weights()[0])
140494823634144
>>> id(model2.layers[0].get_weights()[0])
140494823635664
The ids of kernel weights arrays are different so they are different objects, but with the same value.
edited Nov 16 '18 at 6:49
answered Nov 15 '18 at 7:38
todaytoday
11k22038
11k22038
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53314152%2fcopying-weights-of-a-specific-layer-keras%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown