Add an exponential line in ggplot that goes through pre-specified points












2















The code below plots step functions of increasing accuracy toward the underlying polynomial or exponential curve. I am trying to add a curve to my plot that goes through the bottom of each step that I have added.



The commented lines are different attempts that I have tried, but nothing goes exactly through all of the bottom corners of each step down. Is anyone able to help me achieve this? Any help would be greatly appreciated.



 library(ggplot2)

X1 <- seq(1, 5, by=0.25)
Y1 <- (0.74 * X^(-2)+0.25)*100
sm <- data.frame(X1, Y1)

X2 <- sort(rep(seq(1, 5, by=0.5), 2))[-18]
Y2 <- sort(rep(Y1[1:17 %% 2 == 1], 2), decreasing = T)[-18]
med <- data.frame(X1, Y2)

X3 <- sort(rep(seq(1,5), 4))[1:17]
Y3 <- sort(rep(Y1[c(1, 5, 9, 13, 17)], 4), decreasing = T)[1:17]
lg <- data.frame(X1, Y3)

ggplot() +
#stat_function(data=sm, mapping = aes(x = X), fun = function(x) {exp(-1*x)*100+28}) +
#geom_curve(aes(x=1, xend=5, y=99, yend=28), ncp = 17) +
#geom_smooth(data = sm, aes(x=X1, y=Y1), method="lm", formula = y ~ poly(x,2), se=F, color= "black", fullrange=T) +
#geom_smooth(data = sm, aes(x=X1, y=Y1), method="lm", formula = (y ~ exp(-1.9*x)), se=F, color= "black", fullrange=T) +
scale_y_continuous(name="Overall Survival (%)", limits=c(0, 100)) +
scale_x_continuous(breaks = seq(from=1, to=5, by=0.25), name = "Survival Time (years)") +
geom_step(colour = "red", size = 1, data = lg, aes(x=X1, y=Y3)) +
geom_step(colour = "purple", size = 1, data = med, aes(x=X1, y=Y2)) +
geom_step(colour = "orange", size = 1, data = sm, aes(x=X1, y=Y1)) +
theme_classic()









share|improve this question



























    2















    The code below plots step functions of increasing accuracy toward the underlying polynomial or exponential curve. I am trying to add a curve to my plot that goes through the bottom of each step that I have added.



    The commented lines are different attempts that I have tried, but nothing goes exactly through all of the bottom corners of each step down. Is anyone able to help me achieve this? Any help would be greatly appreciated.



     library(ggplot2)

    X1 <- seq(1, 5, by=0.25)
    Y1 <- (0.74 * X^(-2)+0.25)*100
    sm <- data.frame(X1, Y1)

    X2 <- sort(rep(seq(1, 5, by=0.5), 2))[-18]
    Y2 <- sort(rep(Y1[1:17 %% 2 == 1], 2), decreasing = T)[-18]
    med <- data.frame(X1, Y2)

    X3 <- sort(rep(seq(1,5), 4))[1:17]
    Y3 <- sort(rep(Y1[c(1, 5, 9, 13, 17)], 4), decreasing = T)[1:17]
    lg <- data.frame(X1, Y3)

    ggplot() +
    #stat_function(data=sm, mapping = aes(x = X), fun = function(x) {exp(-1*x)*100+28}) +
    #geom_curve(aes(x=1, xend=5, y=99, yend=28), ncp = 17) +
    #geom_smooth(data = sm, aes(x=X1, y=Y1), method="lm", formula = y ~ poly(x,2), se=F, color= "black", fullrange=T) +
    #geom_smooth(data = sm, aes(x=X1, y=Y1), method="lm", formula = (y ~ exp(-1.9*x)), se=F, color= "black", fullrange=T) +
    scale_y_continuous(name="Overall Survival (%)", limits=c(0, 100)) +
    scale_x_continuous(breaks = seq(from=1, to=5, by=0.25), name = "Survival Time (years)") +
    geom_step(colour = "red", size = 1, data = lg, aes(x=X1, y=Y3)) +
    geom_step(colour = "purple", size = 1, data = med, aes(x=X1, y=Y2)) +
    geom_step(colour = "orange", size = 1, data = sm, aes(x=X1, y=Y1)) +
    theme_classic()









    share|improve this question

























      2












      2








      2








      The code below plots step functions of increasing accuracy toward the underlying polynomial or exponential curve. I am trying to add a curve to my plot that goes through the bottom of each step that I have added.



      The commented lines are different attempts that I have tried, but nothing goes exactly through all of the bottom corners of each step down. Is anyone able to help me achieve this? Any help would be greatly appreciated.



       library(ggplot2)

      X1 <- seq(1, 5, by=0.25)
      Y1 <- (0.74 * X^(-2)+0.25)*100
      sm <- data.frame(X1, Y1)

      X2 <- sort(rep(seq(1, 5, by=0.5), 2))[-18]
      Y2 <- sort(rep(Y1[1:17 %% 2 == 1], 2), decreasing = T)[-18]
      med <- data.frame(X1, Y2)

      X3 <- sort(rep(seq(1,5), 4))[1:17]
      Y3 <- sort(rep(Y1[c(1, 5, 9, 13, 17)], 4), decreasing = T)[1:17]
      lg <- data.frame(X1, Y3)

      ggplot() +
      #stat_function(data=sm, mapping = aes(x = X), fun = function(x) {exp(-1*x)*100+28}) +
      #geom_curve(aes(x=1, xend=5, y=99, yend=28), ncp = 17) +
      #geom_smooth(data = sm, aes(x=X1, y=Y1), method="lm", formula = y ~ poly(x,2), se=F, color= "black", fullrange=T) +
      #geom_smooth(data = sm, aes(x=X1, y=Y1), method="lm", formula = (y ~ exp(-1.9*x)), se=F, color= "black", fullrange=T) +
      scale_y_continuous(name="Overall Survival (%)", limits=c(0, 100)) +
      scale_x_continuous(breaks = seq(from=1, to=5, by=0.25), name = "Survival Time (years)") +
      geom_step(colour = "red", size = 1, data = lg, aes(x=X1, y=Y3)) +
      geom_step(colour = "purple", size = 1, data = med, aes(x=X1, y=Y2)) +
      geom_step(colour = "orange", size = 1, data = sm, aes(x=X1, y=Y1)) +
      theme_classic()









      share|improve this question














      The code below plots step functions of increasing accuracy toward the underlying polynomial or exponential curve. I am trying to add a curve to my plot that goes through the bottom of each step that I have added.



      The commented lines are different attempts that I have tried, but nothing goes exactly through all of the bottom corners of each step down. Is anyone able to help me achieve this? Any help would be greatly appreciated.



       library(ggplot2)

      X1 <- seq(1, 5, by=0.25)
      Y1 <- (0.74 * X^(-2)+0.25)*100
      sm <- data.frame(X1, Y1)

      X2 <- sort(rep(seq(1, 5, by=0.5), 2))[-18]
      Y2 <- sort(rep(Y1[1:17 %% 2 == 1], 2), decreasing = T)[-18]
      med <- data.frame(X1, Y2)

      X3 <- sort(rep(seq(1,5), 4))[1:17]
      Y3 <- sort(rep(Y1[c(1, 5, 9, 13, 17)], 4), decreasing = T)[1:17]
      lg <- data.frame(X1, Y3)

      ggplot() +
      #stat_function(data=sm, mapping = aes(x = X), fun = function(x) {exp(-1*x)*100+28}) +
      #geom_curve(aes(x=1, xend=5, y=99, yend=28), ncp = 17) +
      #geom_smooth(data = sm, aes(x=X1, y=Y1), method="lm", formula = y ~ poly(x,2), se=F, color= "black", fullrange=T) +
      #geom_smooth(data = sm, aes(x=X1, y=Y1), method="lm", formula = (y ~ exp(-1.9*x)), se=F, color= "black", fullrange=T) +
      scale_y_continuous(name="Overall Survival (%)", limits=c(0, 100)) +
      scale_x_continuous(breaks = seq(from=1, to=5, by=0.25), name = "Survival Time (years)") +
      geom_step(colour = "red", size = 1, data = lg, aes(x=X1, y=Y3)) +
      geom_step(colour = "purple", size = 1, data = med, aes(x=X1, y=Y2)) +
      geom_step(colour = "orange", size = 1, data = sm, aes(x=X1, y=Y1)) +
      theme_classic()






      r ggplot2






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 13 '18 at 2:59









      RABRAB

      783116




      783116
























          1 Answer
          1






          active

          oldest

          votes


















          1














          I ended up re-doing the initial functions and made it all match up:



          MyFunction <- function(x) {100*exp(-(1/4)*x)}

          Xyearly <- c(0:5)
          Yyearly <- MyFunction(Xyearly)
          Yearly <- data.frame(x=Xyearly, y=Yyearly)

          X6monthly <- c(0:10/2)
          Y6monthly <- MyFunction(X6monthly)
          Month6 <- data.frame(x=X6monthly, y=Y6monthly)

          X3monthly <- c(0:15/3)
          Y3monthly <- MyFunction(X3monthly)
          Month3 <- data.frame(x=X3monthly, y=Y3monthly)

          X1monthly <- c(0:60/12)
          Y1monthly <- MyFunction(X1monthly)
          Month1 <- data.frame(x=X1monthly, y=Y1monthly)

          ggplot() +
          stat_function(data=data.frame(x = 0), mapping = aes(x = x), fun = MyFunction, size=1.2) +
          scale_y_continuous(name="Overall Survival (%)", limits=c(0, 100)) +
          scale_x_continuous(breaks = seq(from=0, to=5, by=0.5), name = "Survival Time (years)") +
          geom_step(colour = "red", size = 1, data = Yearly, aes(x=x, y=y)) +
          geom_step(colour = "purple", size = 1, data = Month6, aes(x=x, y=y)) +
          geom_step(colour = "orange", size = 1, data = Month3, aes(x=x, y=y)) +
          geom_step(colour = "limegreen", size = 1, data = Month1, aes(x=x, y=y))





          share|improve this answer























            Your Answer






            StackExchange.ifUsing("editor", function () {
            StackExchange.using("externalEditor", function () {
            StackExchange.using("snippets", function () {
            StackExchange.snippets.init();
            });
            });
            }, "code-snippets");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "1"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53273151%2fadd-an-exponential-line-in-ggplot-that-goes-through-pre-specified-points%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1














            I ended up re-doing the initial functions and made it all match up:



            MyFunction <- function(x) {100*exp(-(1/4)*x)}

            Xyearly <- c(0:5)
            Yyearly <- MyFunction(Xyearly)
            Yearly <- data.frame(x=Xyearly, y=Yyearly)

            X6monthly <- c(0:10/2)
            Y6monthly <- MyFunction(X6monthly)
            Month6 <- data.frame(x=X6monthly, y=Y6monthly)

            X3monthly <- c(0:15/3)
            Y3monthly <- MyFunction(X3monthly)
            Month3 <- data.frame(x=X3monthly, y=Y3monthly)

            X1monthly <- c(0:60/12)
            Y1monthly <- MyFunction(X1monthly)
            Month1 <- data.frame(x=X1monthly, y=Y1monthly)

            ggplot() +
            stat_function(data=data.frame(x = 0), mapping = aes(x = x), fun = MyFunction, size=1.2) +
            scale_y_continuous(name="Overall Survival (%)", limits=c(0, 100)) +
            scale_x_continuous(breaks = seq(from=0, to=5, by=0.5), name = "Survival Time (years)") +
            geom_step(colour = "red", size = 1, data = Yearly, aes(x=x, y=y)) +
            geom_step(colour = "purple", size = 1, data = Month6, aes(x=x, y=y)) +
            geom_step(colour = "orange", size = 1, data = Month3, aes(x=x, y=y)) +
            geom_step(colour = "limegreen", size = 1, data = Month1, aes(x=x, y=y))





            share|improve this answer




























              1














              I ended up re-doing the initial functions and made it all match up:



              MyFunction <- function(x) {100*exp(-(1/4)*x)}

              Xyearly <- c(0:5)
              Yyearly <- MyFunction(Xyearly)
              Yearly <- data.frame(x=Xyearly, y=Yyearly)

              X6monthly <- c(0:10/2)
              Y6monthly <- MyFunction(X6monthly)
              Month6 <- data.frame(x=X6monthly, y=Y6monthly)

              X3monthly <- c(0:15/3)
              Y3monthly <- MyFunction(X3monthly)
              Month3 <- data.frame(x=X3monthly, y=Y3monthly)

              X1monthly <- c(0:60/12)
              Y1monthly <- MyFunction(X1monthly)
              Month1 <- data.frame(x=X1monthly, y=Y1monthly)

              ggplot() +
              stat_function(data=data.frame(x = 0), mapping = aes(x = x), fun = MyFunction, size=1.2) +
              scale_y_continuous(name="Overall Survival (%)", limits=c(0, 100)) +
              scale_x_continuous(breaks = seq(from=0, to=5, by=0.5), name = "Survival Time (years)") +
              geom_step(colour = "red", size = 1, data = Yearly, aes(x=x, y=y)) +
              geom_step(colour = "purple", size = 1, data = Month6, aes(x=x, y=y)) +
              geom_step(colour = "orange", size = 1, data = Month3, aes(x=x, y=y)) +
              geom_step(colour = "limegreen", size = 1, data = Month1, aes(x=x, y=y))





              share|improve this answer


























                1












                1








                1







                I ended up re-doing the initial functions and made it all match up:



                MyFunction <- function(x) {100*exp(-(1/4)*x)}

                Xyearly <- c(0:5)
                Yyearly <- MyFunction(Xyearly)
                Yearly <- data.frame(x=Xyearly, y=Yyearly)

                X6monthly <- c(0:10/2)
                Y6monthly <- MyFunction(X6monthly)
                Month6 <- data.frame(x=X6monthly, y=Y6monthly)

                X3monthly <- c(0:15/3)
                Y3monthly <- MyFunction(X3monthly)
                Month3 <- data.frame(x=X3monthly, y=Y3monthly)

                X1monthly <- c(0:60/12)
                Y1monthly <- MyFunction(X1monthly)
                Month1 <- data.frame(x=X1monthly, y=Y1monthly)

                ggplot() +
                stat_function(data=data.frame(x = 0), mapping = aes(x = x), fun = MyFunction, size=1.2) +
                scale_y_continuous(name="Overall Survival (%)", limits=c(0, 100)) +
                scale_x_continuous(breaks = seq(from=0, to=5, by=0.5), name = "Survival Time (years)") +
                geom_step(colour = "red", size = 1, data = Yearly, aes(x=x, y=y)) +
                geom_step(colour = "purple", size = 1, data = Month6, aes(x=x, y=y)) +
                geom_step(colour = "orange", size = 1, data = Month3, aes(x=x, y=y)) +
                geom_step(colour = "limegreen", size = 1, data = Month1, aes(x=x, y=y))





                share|improve this answer













                I ended up re-doing the initial functions and made it all match up:



                MyFunction <- function(x) {100*exp(-(1/4)*x)}

                Xyearly <- c(0:5)
                Yyearly <- MyFunction(Xyearly)
                Yearly <- data.frame(x=Xyearly, y=Yyearly)

                X6monthly <- c(0:10/2)
                Y6monthly <- MyFunction(X6monthly)
                Month6 <- data.frame(x=X6monthly, y=Y6monthly)

                X3monthly <- c(0:15/3)
                Y3monthly <- MyFunction(X3monthly)
                Month3 <- data.frame(x=X3monthly, y=Y3monthly)

                X1monthly <- c(0:60/12)
                Y1monthly <- MyFunction(X1monthly)
                Month1 <- data.frame(x=X1monthly, y=Y1monthly)

                ggplot() +
                stat_function(data=data.frame(x = 0), mapping = aes(x = x), fun = MyFunction, size=1.2) +
                scale_y_continuous(name="Overall Survival (%)", limits=c(0, 100)) +
                scale_x_continuous(breaks = seq(from=0, to=5, by=0.5), name = "Survival Time (years)") +
                geom_step(colour = "red", size = 1, data = Yearly, aes(x=x, y=y)) +
                geom_step(colour = "purple", size = 1, data = Month6, aes(x=x, y=y)) +
                geom_step(colour = "orange", size = 1, data = Month3, aes(x=x, y=y)) +
                geom_step(colour = "limegreen", size = 1, data = Month1, aes(x=x, y=y))






                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Nov 20 '18 at 3:27









                RABRAB

                783116




                783116






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Stack Overflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53273151%2fadd-an-exponential-line-in-ggplot-that-goes-through-pre-specified-points%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Florida Star v. B. J. F.

                    Danny Elfman

                    Retrieve a Users Dashboard in Tumblr with R and TumblR. Oauth Issues