Circle detection with OpenCV
up vote
2
down vote
favorite
How can I improve the performance of the following circle-detection code
from matplotlib.pyplot import imshow, scatter, show
import cv2
image = cv2.imread('points.png', 0)
_, image = cv2.threshold(image, 254, 255, cv2.THRESH_BINARY)
image = cv2.Canny(image, 1, 1)
imshow(image, cmap='gray')
circles = cv2.HoughCircles(image, cv2.HOUGH_GRADIENT, 2, 32)
x = circles[0, :, 0]
y = circles[0, :, 1]
scatter(x, y)
show()
with the following source image:
I have tried adjusting the parameters of the HoughCircles
function but they result in either too many false positives or too many false negatives. In particular, I am having trouble with spurious circles being detected in the gap between the two blobs:
python opencv geometry computer-vision feature-detection
add a comment |
up vote
2
down vote
favorite
How can I improve the performance of the following circle-detection code
from matplotlib.pyplot import imshow, scatter, show
import cv2
image = cv2.imread('points.png', 0)
_, image = cv2.threshold(image, 254, 255, cv2.THRESH_BINARY)
image = cv2.Canny(image, 1, 1)
imshow(image, cmap='gray')
circles = cv2.HoughCircles(image, cv2.HOUGH_GRADIENT, 2, 32)
x = circles[0, :, 0]
y = circles[0, :, 1]
scatter(x, y)
show()
with the following source image:
I have tried adjusting the parameters of the HoughCircles
function but they result in either too many false positives or too many false negatives. In particular, I am having trouble with spurious circles being detected in the gap between the two blobs:
python opencv geometry computer-vision feature-detection
Consider accepting the answer if you think it was helpful.
– m3h0w
Mar 10 '17 at 11:25
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
How can I improve the performance of the following circle-detection code
from matplotlib.pyplot import imshow, scatter, show
import cv2
image = cv2.imread('points.png', 0)
_, image = cv2.threshold(image, 254, 255, cv2.THRESH_BINARY)
image = cv2.Canny(image, 1, 1)
imshow(image, cmap='gray')
circles = cv2.HoughCircles(image, cv2.HOUGH_GRADIENT, 2, 32)
x = circles[0, :, 0]
y = circles[0, :, 1]
scatter(x, y)
show()
with the following source image:
I have tried adjusting the parameters of the HoughCircles
function but they result in either too many false positives or too many false negatives. In particular, I am having trouble with spurious circles being detected in the gap between the two blobs:
python opencv geometry computer-vision feature-detection
How can I improve the performance of the following circle-detection code
from matplotlib.pyplot import imshow, scatter, show
import cv2
image = cv2.imread('points.png', 0)
_, image = cv2.threshold(image, 254, 255, cv2.THRESH_BINARY)
image = cv2.Canny(image, 1, 1)
imshow(image, cmap='gray')
circles = cv2.HoughCircles(image, cv2.HOUGH_GRADIENT, 2, 32)
x = circles[0, :, 0]
y = circles[0, :, 1]
scatter(x, y)
show()
with the following source image:
I have tried adjusting the parameters of the HoughCircles
function but they result in either too many false positives or too many false negatives. In particular, I am having trouble with spurious circles being detected in the gap between the two blobs:
python opencv geometry computer-vision feature-detection
python opencv geometry computer-vision feature-detection
asked Mar 7 '17 at 21:26
user76284
401515
401515
Consider accepting the answer if you think it was helpful.
– m3h0w
Mar 10 '17 at 11:25
add a comment |
Consider accepting the answer if you think it was helpful.
– m3h0w
Mar 10 '17 at 11:25
Consider accepting the answer if you think it was helpful.
– m3h0w
Mar 10 '17 at 11:25
Consider accepting the answer if you think it was helpful.
– m3h0w
Mar 10 '17 at 11:25
add a comment |
1 Answer
1
active
oldest
votes
up vote
7
down vote
accepted
@Carlos, I'm not really a big fan of Hough Circles in situations like the one you've described. To be honest, I find this algorithm very unintuitive. What I would recommend in your case is using findContour()
function and then calculating mass centers. Thus said, I tuned the Hough's parameters a bit to get reasonable results. I also used a different method for preprocessing before Canny, since I don't see how that thresholding would work in any other case than that particular one.
Hough method:
Finding mass centers:
And the code:
from matplotlib.pyplot import imshow, scatter, show, savefig
import cv2
image = cv2.imread('circles.png', 0)
#_, image = cv2.threshold(image, 254, 255, cv2.THRESH_BINARY)
image = cv2.GaussianBlur(image.copy(), (27, 27), 0)
image = cv2.Canny(image, 0, 130)
cv2.imshow("canny", image)
cv2.waitKey(0)
imshow(image, cmap='gray')
circles = cv2.HoughCircles(image, cv2.HOUGH_GRADIENT, 22, minDist=1, maxRadius=50)
x = circles[0, :, 0]
y = circles[0, :, 1]
scatter(x, y)
show()
savefig('result1.png')
cv2.waitKey(0)
_, cnts, _ = cv2.findContours(image.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
# loop over the contours
for c in cnts:
# compute the center of the contour
M = cv2.moments(c)
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
#draw the contour and center of the shape on the image
cv2.drawContours(image, [c], -1, (125, 125, 125), 2)
cv2.circle(image, (cX, cY), 3, (255, 255, 255), -1)
cv2.imshow("Image", image)
cv2.imwrite("result2.png", image)
cv2.waitKey(0)
Both methods require some more fine tuning but I hope that gives you something more to work with.
Sources: this answer and pyimagesearch.
1
Hough transform gets unreliable when there are many circles close together, because parts of different circles combine to give the likelihood of a new circle. As @m3h0w has shown, you can tun the Hough parameters and also use more advanced features like contours and moments. The key thing is to either preprocess images before Hough transform, or post-process the results after the transform, or do both.
– Totoro
Mar 8 '17 at 2:13
@m3h0w Aha another master stroke. Wish there was an option to favorite the answer as well.
– Jeru Luke
Mar 10 '17 at 13:35
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f42658653%2fcircle-detection-with-opencv%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
7
down vote
accepted
@Carlos, I'm not really a big fan of Hough Circles in situations like the one you've described. To be honest, I find this algorithm very unintuitive. What I would recommend in your case is using findContour()
function and then calculating mass centers. Thus said, I tuned the Hough's parameters a bit to get reasonable results. I also used a different method for preprocessing before Canny, since I don't see how that thresholding would work in any other case than that particular one.
Hough method:
Finding mass centers:
And the code:
from matplotlib.pyplot import imshow, scatter, show, savefig
import cv2
image = cv2.imread('circles.png', 0)
#_, image = cv2.threshold(image, 254, 255, cv2.THRESH_BINARY)
image = cv2.GaussianBlur(image.copy(), (27, 27), 0)
image = cv2.Canny(image, 0, 130)
cv2.imshow("canny", image)
cv2.waitKey(0)
imshow(image, cmap='gray')
circles = cv2.HoughCircles(image, cv2.HOUGH_GRADIENT, 22, minDist=1, maxRadius=50)
x = circles[0, :, 0]
y = circles[0, :, 1]
scatter(x, y)
show()
savefig('result1.png')
cv2.waitKey(0)
_, cnts, _ = cv2.findContours(image.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
# loop over the contours
for c in cnts:
# compute the center of the contour
M = cv2.moments(c)
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
#draw the contour and center of the shape on the image
cv2.drawContours(image, [c], -1, (125, 125, 125), 2)
cv2.circle(image, (cX, cY), 3, (255, 255, 255), -1)
cv2.imshow("Image", image)
cv2.imwrite("result2.png", image)
cv2.waitKey(0)
Both methods require some more fine tuning but I hope that gives you something more to work with.
Sources: this answer and pyimagesearch.
1
Hough transform gets unreliable when there are many circles close together, because parts of different circles combine to give the likelihood of a new circle. As @m3h0w has shown, you can tun the Hough parameters and also use more advanced features like contours and moments. The key thing is to either preprocess images before Hough transform, or post-process the results after the transform, or do both.
– Totoro
Mar 8 '17 at 2:13
@m3h0w Aha another master stroke. Wish there was an option to favorite the answer as well.
– Jeru Luke
Mar 10 '17 at 13:35
add a comment |
up vote
7
down vote
accepted
@Carlos, I'm not really a big fan of Hough Circles in situations like the one you've described. To be honest, I find this algorithm very unintuitive. What I would recommend in your case is using findContour()
function and then calculating mass centers. Thus said, I tuned the Hough's parameters a bit to get reasonable results. I also used a different method for preprocessing before Canny, since I don't see how that thresholding would work in any other case than that particular one.
Hough method:
Finding mass centers:
And the code:
from matplotlib.pyplot import imshow, scatter, show, savefig
import cv2
image = cv2.imread('circles.png', 0)
#_, image = cv2.threshold(image, 254, 255, cv2.THRESH_BINARY)
image = cv2.GaussianBlur(image.copy(), (27, 27), 0)
image = cv2.Canny(image, 0, 130)
cv2.imshow("canny", image)
cv2.waitKey(0)
imshow(image, cmap='gray')
circles = cv2.HoughCircles(image, cv2.HOUGH_GRADIENT, 22, minDist=1, maxRadius=50)
x = circles[0, :, 0]
y = circles[0, :, 1]
scatter(x, y)
show()
savefig('result1.png')
cv2.waitKey(0)
_, cnts, _ = cv2.findContours(image.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
# loop over the contours
for c in cnts:
# compute the center of the contour
M = cv2.moments(c)
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
#draw the contour and center of the shape on the image
cv2.drawContours(image, [c], -1, (125, 125, 125), 2)
cv2.circle(image, (cX, cY), 3, (255, 255, 255), -1)
cv2.imshow("Image", image)
cv2.imwrite("result2.png", image)
cv2.waitKey(0)
Both methods require some more fine tuning but I hope that gives you something more to work with.
Sources: this answer and pyimagesearch.
1
Hough transform gets unreliable when there are many circles close together, because parts of different circles combine to give the likelihood of a new circle. As @m3h0w has shown, you can tun the Hough parameters and also use more advanced features like contours and moments. The key thing is to either preprocess images before Hough transform, or post-process the results after the transform, or do both.
– Totoro
Mar 8 '17 at 2:13
@m3h0w Aha another master stroke. Wish there was an option to favorite the answer as well.
– Jeru Luke
Mar 10 '17 at 13:35
add a comment |
up vote
7
down vote
accepted
up vote
7
down vote
accepted
@Carlos, I'm not really a big fan of Hough Circles in situations like the one you've described. To be honest, I find this algorithm very unintuitive. What I would recommend in your case is using findContour()
function and then calculating mass centers. Thus said, I tuned the Hough's parameters a bit to get reasonable results. I also used a different method for preprocessing before Canny, since I don't see how that thresholding would work in any other case than that particular one.
Hough method:
Finding mass centers:
And the code:
from matplotlib.pyplot import imshow, scatter, show, savefig
import cv2
image = cv2.imread('circles.png', 0)
#_, image = cv2.threshold(image, 254, 255, cv2.THRESH_BINARY)
image = cv2.GaussianBlur(image.copy(), (27, 27), 0)
image = cv2.Canny(image, 0, 130)
cv2.imshow("canny", image)
cv2.waitKey(0)
imshow(image, cmap='gray')
circles = cv2.HoughCircles(image, cv2.HOUGH_GRADIENT, 22, minDist=1, maxRadius=50)
x = circles[0, :, 0]
y = circles[0, :, 1]
scatter(x, y)
show()
savefig('result1.png')
cv2.waitKey(0)
_, cnts, _ = cv2.findContours(image.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
# loop over the contours
for c in cnts:
# compute the center of the contour
M = cv2.moments(c)
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
#draw the contour and center of the shape on the image
cv2.drawContours(image, [c], -1, (125, 125, 125), 2)
cv2.circle(image, (cX, cY), 3, (255, 255, 255), -1)
cv2.imshow("Image", image)
cv2.imwrite("result2.png", image)
cv2.waitKey(0)
Both methods require some more fine tuning but I hope that gives you something more to work with.
Sources: this answer and pyimagesearch.
@Carlos, I'm not really a big fan of Hough Circles in situations like the one you've described. To be honest, I find this algorithm very unintuitive. What I would recommend in your case is using findContour()
function and then calculating mass centers. Thus said, I tuned the Hough's parameters a bit to get reasonable results. I also used a different method for preprocessing before Canny, since I don't see how that thresholding would work in any other case than that particular one.
Hough method:
Finding mass centers:
And the code:
from matplotlib.pyplot import imshow, scatter, show, savefig
import cv2
image = cv2.imread('circles.png', 0)
#_, image = cv2.threshold(image, 254, 255, cv2.THRESH_BINARY)
image = cv2.GaussianBlur(image.copy(), (27, 27), 0)
image = cv2.Canny(image, 0, 130)
cv2.imshow("canny", image)
cv2.waitKey(0)
imshow(image, cmap='gray')
circles = cv2.HoughCircles(image, cv2.HOUGH_GRADIENT, 22, minDist=1, maxRadius=50)
x = circles[0, :, 0]
y = circles[0, :, 1]
scatter(x, y)
show()
savefig('result1.png')
cv2.waitKey(0)
_, cnts, _ = cv2.findContours(image.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
# loop over the contours
for c in cnts:
# compute the center of the contour
M = cv2.moments(c)
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
#draw the contour and center of the shape on the image
cv2.drawContours(image, [c], -1, (125, 125, 125), 2)
cv2.circle(image, (cX, cY), 3, (255, 255, 255), -1)
cv2.imshow("Image", image)
cv2.imwrite("result2.png", image)
cv2.waitKey(0)
Both methods require some more fine tuning but I hope that gives you something more to work with.
Sources: this answer and pyimagesearch.
edited Nov 11 at 22:11
answered Mar 8 '17 at 0:24
m3h0w
1,02011027
1,02011027
1
Hough transform gets unreliable when there are many circles close together, because parts of different circles combine to give the likelihood of a new circle. As @m3h0w has shown, you can tun the Hough parameters and also use more advanced features like contours and moments. The key thing is to either preprocess images before Hough transform, or post-process the results after the transform, or do both.
– Totoro
Mar 8 '17 at 2:13
@m3h0w Aha another master stroke. Wish there was an option to favorite the answer as well.
– Jeru Luke
Mar 10 '17 at 13:35
add a comment |
1
Hough transform gets unreliable when there are many circles close together, because parts of different circles combine to give the likelihood of a new circle. As @m3h0w has shown, you can tun the Hough parameters and also use more advanced features like contours and moments. The key thing is to either preprocess images before Hough transform, or post-process the results after the transform, or do both.
– Totoro
Mar 8 '17 at 2:13
@m3h0w Aha another master stroke. Wish there was an option to favorite the answer as well.
– Jeru Luke
Mar 10 '17 at 13:35
1
1
Hough transform gets unreliable when there are many circles close together, because parts of different circles combine to give the likelihood of a new circle. As @m3h0w has shown, you can tun the Hough parameters and also use more advanced features like contours and moments. The key thing is to either preprocess images before Hough transform, or post-process the results after the transform, or do both.
– Totoro
Mar 8 '17 at 2:13
Hough transform gets unreliable when there are many circles close together, because parts of different circles combine to give the likelihood of a new circle. As @m3h0w has shown, you can tun the Hough parameters and also use more advanced features like contours and moments. The key thing is to either preprocess images before Hough transform, or post-process the results after the transform, or do both.
– Totoro
Mar 8 '17 at 2:13
@m3h0w Aha another master stroke. Wish there was an option to favorite the answer as well.
– Jeru Luke
Mar 10 '17 at 13:35
@m3h0w Aha another master stroke. Wish there was an option to favorite the answer as well.
– Jeru Luke
Mar 10 '17 at 13:35
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f42658653%2fcircle-detection-with-opencv%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Consider accepting the answer if you think it was helpful.
– m3h0w
Mar 10 '17 at 11:25