How to Update parameters every certain steps?












1















I'm using a tensorflow based keras to train a object detection network.



Due to small GPU memory size, have to update params once per some steps to "expand" batch size.
But my implementation can't successfully converge in Mask Rcnn training or perform badly comparing normal optimizers in simple cifar10 classification:



class custom_SGD(Optimizer):
def get_updates(self, loss, params):
"""Main params updates operation
"""
shapes = [K.int_shape(p) for p in params]
if self.nesterov:
sum_grads = [K.zeros(shape) for shape in shapes]

moments = [K.zeros(shape) for shape in shapes]
sum_moments = [K.zeros(shape) for shape in shapes]

# Current gradients
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, 1)]
self.weights = [self.iterations] + moments

cond1 = K.equal(self.iterations % self.steps_per_update, 0)

# Learning rate decay
lr = self.lr
if self.initial_decay > 0:
lr = lr * (1. / (1. + self.decay * K.cast(self.iterations,
K.dtype(self.decay))))
if not self.nesterov:
for p, g, m,sm in zip(params, grads,moments, sum_moments):
v = self.momentum*m - lr*g
# updates sum_moments, moments
self.updates.append(K.update(sm, sm+v))
self.updates.append(K.switch(cond1,K.update(m,sm/float(self.steps_per_update)),m))

new_p = p + m
# Apply constraint
if getattr(p, 'constraint', None) is not None:
new_p = p.constraint(new_p)
self.updates.append(K.switch(cond1,K.update(p,new_p),p))
# Clear up container
self.updates.append(K.switch(cond1,K.update(sm,K.zeros_like(sm)),sm))

return self.updates


Can anybody tell me why.
Thanks in advance.










share|improve this question



























    1















    I'm using a tensorflow based keras to train a object detection network.



    Due to small GPU memory size, have to update params once per some steps to "expand" batch size.
    But my implementation can't successfully converge in Mask Rcnn training or perform badly comparing normal optimizers in simple cifar10 classification:



    class custom_SGD(Optimizer):
    def get_updates(self, loss, params):
    """Main params updates operation
    """
    shapes = [K.int_shape(p) for p in params]
    if self.nesterov:
    sum_grads = [K.zeros(shape) for shape in shapes]

    moments = [K.zeros(shape) for shape in shapes]
    sum_moments = [K.zeros(shape) for shape in shapes]

    # Current gradients
    grads = self.get_gradients(loss, params)
    self.updates = [K.update_add(self.iterations, 1)]
    self.weights = [self.iterations] + moments

    cond1 = K.equal(self.iterations % self.steps_per_update, 0)

    # Learning rate decay
    lr = self.lr
    if self.initial_decay > 0:
    lr = lr * (1. / (1. + self.decay * K.cast(self.iterations,
    K.dtype(self.decay))))
    if not self.nesterov:
    for p, g, m,sm in zip(params, grads,moments, sum_moments):
    v = self.momentum*m - lr*g
    # updates sum_moments, moments
    self.updates.append(K.update(sm, sm+v))
    self.updates.append(K.switch(cond1,K.update(m,sm/float(self.steps_per_update)),m))

    new_p = p + m
    # Apply constraint
    if getattr(p, 'constraint', None) is not None:
    new_p = p.constraint(new_p)
    self.updates.append(K.switch(cond1,K.update(p,new_p),p))
    # Clear up container
    self.updates.append(K.switch(cond1,K.update(sm,K.zeros_like(sm)),sm))

    return self.updates


    Can anybody tell me why.
    Thanks in advance.










    share|improve this question

























      1












      1








      1


      1






      I'm using a tensorflow based keras to train a object detection network.



      Due to small GPU memory size, have to update params once per some steps to "expand" batch size.
      But my implementation can't successfully converge in Mask Rcnn training or perform badly comparing normal optimizers in simple cifar10 classification:



      class custom_SGD(Optimizer):
      def get_updates(self, loss, params):
      """Main params updates operation
      """
      shapes = [K.int_shape(p) for p in params]
      if self.nesterov:
      sum_grads = [K.zeros(shape) for shape in shapes]

      moments = [K.zeros(shape) for shape in shapes]
      sum_moments = [K.zeros(shape) for shape in shapes]

      # Current gradients
      grads = self.get_gradients(loss, params)
      self.updates = [K.update_add(self.iterations, 1)]
      self.weights = [self.iterations] + moments

      cond1 = K.equal(self.iterations % self.steps_per_update, 0)

      # Learning rate decay
      lr = self.lr
      if self.initial_decay > 0:
      lr = lr * (1. / (1. + self.decay * K.cast(self.iterations,
      K.dtype(self.decay))))
      if not self.nesterov:
      for p, g, m,sm in zip(params, grads,moments, sum_moments):
      v = self.momentum*m - lr*g
      # updates sum_moments, moments
      self.updates.append(K.update(sm, sm+v))
      self.updates.append(K.switch(cond1,K.update(m,sm/float(self.steps_per_update)),m))

      new_p = p + m
      # Apply constraint
      if getattr(p, 'constraint', None) is not None:
      new_p = p.constraint(new_p)
      self.updates.append(K.switch(cond1,K.update(p,new_p),p))
      # Clear up container
      self.updates.append(K.switch(cond1,K.update(sm,K.zeros_like(sm)),sm))

      return self.updates


      Can anybody tell me why.
      Thanks in advance.










      share|improve this question














      I'm using a tensorflow based keras to train a object detection network.



      Due to small GPU memory size, have to update params once per some steps to "expand" batch size.
      But my implementation can't successfully converge in Mask Rcnn training or perform badly comparing normal optimizers in simple cifar10 classification:



      class custom_SGD(Optimizer):
      def get_updates(self, loss, params):
      """Main params updates operation
      """
      shapes = [K.int_shape(p) for p in params]
      if self.nesterov:
      sum_grads = [K.zeros(shape) for shape in shapes]

      moments = [K.zeros(shape) for shape in shapes]
      sum_moments = [K.zeros(shape) for shape in shapes]

      # Current gradients
      grads = self.get_gradients(loss, params)
      self.updates = [K.update_add(self.iterations, 1)]
      self.weights = [self.iterations] + moments

      cond1 = K.equal(self.iterations % self.steps_per_update, 0)

      # Learning rate decay
      lr = self.lr
      if self.initial_decay > 0:
      lr = lr * (1. / (1. + self.decay * K.cast(self.iterations,
      K.dtype(self.decay))))
      if not self.nesterov:
      for p, g, m,sm in zip(params, grads,moments, sum_moments):
      v = self.momentum*m - lr*g
      # updates sum_moments, moments
      self.updates.append(K.update(sm, sm+v))
      self.updates.append(K.switch(cond1,K.update(m,sm/float(self.steps_per_update)),m))

      new_p = p + m
      # Apply constraint
      if getattr(p, 'constraint', None) is not None:
      new_p = p.constraint(new_p)
      self.updates.append(K.switch(cond1,K.update(p,new_p),p))
      # Clear up container
      self.updates.append(K.switch(cond1,K.update(sm,K.zeros_like(sm)),sm))

      return self.updates


      Can anybody tell me why.
      Thanks in advance.







      tensorflow keras deep-learning






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 13 '18 at 3:58









      Zhenshuo LiangZhenshuo Liang

      64




      64
























          0






          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53273568%2fhow-to-update-parameters-every-certain-steps%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53273568%2fhow-to-update-parameters-every-certain-steps%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Florida Star v. B. J. F.

          Danny Elfman

          Retrieve a Users Dashboard in Tumblr with R and TumblR. Oauth Issues