Prediction is slower when model is loaded than if it is fited during the process
I have a strange issue, the DNN.predict method is quite slower when I load my model's weight than when I train with the fit method. I've also noted that when I run a prediction over a batch of images, it's getting faster and faster to predict.
Here is my code
class Reseau(object):
def init(self, img_size, lr=-1, activation=" "):
tf.logging.set_verbosity(tf.logging.ERROR)
self.lr = lr
self.activation = activation
self.img_size = img_size
self.alreadySaved = 0
def setting(self, X, Y, test_x, test_y, nbEpoch):
tflearn.init_graph(num_cores=32, gpu_memory_fraction=1)
with tf.device("/device:GPU:0"):
convnet = input_data(shape=[None, self.img_size, self.img_size, 3], name='input')
convnet = conv_2d(convnet, 32, 5, activation=self.activation)
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 64, 5, activation=self.activation)
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 128, 5, activation=self.activation)
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 64, 5, activation=self.activation)
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 32, 5, activation=self.activation)
convnet = max_pool_2d(convnet, 5)
convnet = flatten(convnet)
convnet = fully_connected(convnet, 1024, activation=self.activation, name='last')
convnet = fully_connected(convnet, 1024, activation=self.activation, name='last')
convnet = fully_connected(convnet, 1024, activation=self.activation, name='last')
convnet = fully_connected(convnet, 1024, activation=self.activation, name='last')
convnet = dropout(convnet, 0.8)
convnet = fully_connected(convnet, 2, activation='softmax')
convnet = regression(convnet, optimizer='adam', learning_rate=self.lr, loss='categorical_crossentropy', name='targets')
self.model = tflearn.DNN(convnet, tensorboard_dir='log')
if self.alreadySaved == 0:
self.model.fit({'input': X}, {'targets': Y}, n_epoch=nbEpoch, validation_set=({'input': test_x}, {'targets': test_y}), snapshot_step=500, show_metric=True, run_id="model")
self.model.save("./model")
else:
self.model.load("./model", weights_only=True)
return self.model
def predire(self, img, label):
image = array(img).reshape(1, self.img_size,self.img_size,3)
model_out = self.model.predict(image)
rep = 0
if np.argmax(model_out) == np.argmax(label): rep = 1
else: rep = 0
return rep
Here is a part of my main
reseau.setting(X, Y, test_x, test_y, NB_EPOCH)
X = np.array([i[0] for i in test]).reshape(-1,IMG_SIZE,IMG_SIZE,3)
Y = [i[1] for i in test]
cpt = 0
vrai = 0
start_time = time.time()
for i in range(20):
cpt = 0
vrai = 0
start_time = time.time()
for img in tqdm(X):
prediction = reseau.predire(img, Y[cpt])
cpt += 1
if prediction == 1:
vrai += 1
As you can see, I predict the same batch of images 20 times. The first time is always slower than the other ones (without fitting, I predict 82 images the first and then 340 a second, with fitting, it's 255 images the first time and 340 a seconde then).
I'm really out of idea to fix this.
python tensorflow tflearn
add a comment |
I have a strange issue, the DNN.predict method is quite slower when I load my model's weight than when I train with the fit method. I've also noted that when I run a prediction over a batch of images, it's getting faster and faster to predict.
Here is my code
class Reseau(object):
def init(self, img_size, lr=-1, activation=" "):
tf.logging.set_verbosity(tf.logging.ERROR)
self.lr = lr
self.activation = activation
self.img_size = img_size
self.alreadySaved = 0
def setting(self, X, Y, test_x, test_y, nbEpoch):
tflearn.init_graph(num_cores=32, gpu_memory_fraction=1)
with tf.device("/device:GPU:0"):
convnet = input_data(shape=[None, self.img_size, self.img_size, 3], name='input')
convnet = conv_2d(convnet, 32, 5, activation=self.activation)
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 64, 5, activation=self.activation)
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 128, 5, activation=self.activation)
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 64, 5, activation=self.activation)
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 32, 5, activation=self.activation)
convnet = max_pool_2d(convnet, 5)
convnet = flatten(convnet)
convnet = fully_connected(convnet, 1024, activation=self.activation, name='last')
convnet = fully_connected(convnet, 1024, activation=self.activation, name='last')
convnet = fully_connected(convnet, 1024, activation=self.activation, name='last')
convnet = fully_connected(convnet, 1024, activation=self.activation, name='last')
convnet = dropout(convnet, 0.8)
convnet = fully_connected(convnet, 2, activation='softmax')
convnet = regression(convnet, optimizer='adam', learning_rate=self.lr, loss='categorical_crossentropy', name='targets')
self.model = tflearn.DNN(convnet, tensorboard_dir='log')
if self.alreadySaved == 0:
self.model.fit({'input': X}, {'targets': Y}, n_epoch=nbEpoch, validation_set=({'input': test_x}, {'targets': test_y}), snapshot_step=500, show_metric=True, run_id="model")
self.model.save("./model")
else:
self.model.load("./model", weights_only=True)
return self.model
def predire(self, img, label):
image = array(img).reshape(1, self.img_size,self.img_size,3)
model_out = self.model.predict(image)
rep = 0
if np.argmax(model_out) == np.argmax(label): rep = 1
else: rep = 0
return rep
Here is a part of my main
reseau.setting(X, Y, test_x, test_y, NB_EPOCH)
X = np.array([i[0] for i in test]).reshape(-1,IMG_SIZE,IMG_SIZE,3)
Y = [i[1] for i in test]
cpt = 0
vrai = 0
start_time = time.time()
for i in range(20):
cpt = 0
vrai = 0
start_time = time.time()
for img in tqdm(X):
prediction = reseau.predire(img, Y[cpt])
cpt += 1
if prediction == 1:
vrai += 1
As you can see, I predict the same batch of images 20 times. The first time is always slower than the other ones (without fitting, I predict 82 images the first and then 340 a second, with fitting, it's 255 images the first time and 340 a seconde then).
I'm really out of idea to fix this.
python tensorflow tflearn
add a comment |
I have a strange issue, the DNN.predict method is quite slower when I load my model's weight than when I train with the fit method. I've also noted that when I run a prediction over a batch of images, it's getting faster and faster to predict.
Here is my code
class Reseau(object):
def init(self, img_size, lr=-1, activation=" "):
tf.logging.set_verbosity(tf.logging.ERROR)
self.lr = lr
self.activation = activation
self.img_size = img_size
self.alreadySaved = 0
def setting(self, X, Y, test_x, test_y, nbEpoch):
tflearn.init_graph(num_cores=32, gpu_memory_fraction=1)
with tf.device("/device:GPU:0"):
convnet = input_data(shape=[None, self.img_size, self.img_size, 3], name='input')
convnet = conv_2d(convnet, 32, 5, activation=self.activation)
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 64, 5, activation=self.activation)
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 128, 5, activation=self.activation)
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 64, 5, activation=self.activation)
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 32, 5, activation=self.activation)
convnet = max_pool_2d(convnet, 5)
convnet = flatten(convnet)
convnet = fully_connected(convnet, 1024, activation=self.activation, name='last')
convnet = fully_connected(convnet, 1024, activation=self.activation, name='last')
convnet = fully_connected(convnet, 1024, activation=self.activation, name='last')
convnet = fully_connected(convnet, 1024, activation=self.activation, name='last')
convnet = dropout(convnet, 0.8)
convnet = fully_connected(convnet, 2, activation='softmax')
convnet = regression(convnet, optimizer='adam', learning_rate=self.lr, loss='categorical_crossentropy', name='targets')
self.model = tflearn.DNN(convnet, tensorboard_dir='log')
if self.alreadySaved == 0:
self.model.fit({'input': X}, {'targets': Y}, n_epoch=nbEpoch, validation_set=({'input': test_x}, {'targets': test_y}), snapshot_step=500, show_metric=True, run_id="model")
self.model.save("./model")
else:
self.model.load("./model", weights_only=True)
return self.model
def predire(self, img, label):
image = array(img).reshape(1, self.img_size,self.img_size,3)
model_out = self.model.predict(image)
rep = 0
if np.argmax(model_out) == np.argmax(label): rep = 1
else: rep = 0
return rep
Here is a part of my main
reseau.setting(X, Y, test_x, test_y, NB_EPOCH)
X = np.array([i[0] for i in test]).reshape(-1,IMG_SIZE,IMG_SIZE,3)
Y = [i[1] for i in test]
cpt = 0
vrai = 0
start_time = time.time()
for i in range(20):
cpt = 0
vrai = 0
start_time = time.time()
for img in tqdm(X):
prediction = reseau.predire(img, Y[cpt])
cpt += 1
if prediction == 1:
vrai += 1
As you can see, I predict the same batch of images 20 times. The first time is always slower than the other ones (without fitting, I predict 82 images the first and then 340 a second, with fitting, it's 255 images the first time and 340 a seconde then).
I'm really out of idea to fix this.
python tensorflow tflearn
I have a strange issue, the DNN.predict method is quite slower when I load my model's weight than when I train with the fit method. I've also noted that when I run a prediction over a batch of images, it's getting faster and faster to predict.
Here is my code
class Reseau(object):
def init(self, img_size, lr=-1, activation=" "):
tf.logging.set_verbosity(tf.logging.ERROR)
self.lr = lr
self.activation = activation
self.img_size = img_size
self.alreadySaved = 0
def setting(self, X, Y, test_x, test_y, nbEpoch):
tflearn.init_graph(num_cores=32, gpu_memory_fraction=1)
with tf.device("/device:GPU:0"):
convnet = input_data(shape=[None, self.img_size, self.img_size, 3], name='input')
convnet = conv_2d(convnet, 32, 5, activation=self.activation)
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 64, 5, activation=self.activation)
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 128, 5, activation=self.activation)
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 64, 5, activation=self.activation)
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 32, 5, activation=self.activation)
convnet = max_pool_2d(convnet, 5)
convnet = flatten(convnet)
convnet = fully_connected(convnet, 1024, activation=self.activation, name='last')
convnet = fully_connected(convnet, 1024, activation=self.activation, name='last')
convnet = fully_connected(convnet, 1024, activation=self.activation, name='last')
convnet = fully_connected(convnet, 1024, activation=self.activation, name='last')
convnet = dropout(convnet, 0.8)
convnet = fully_connected(convnet, 2, activation='softmax')
convnet = regression(convnet, optimizer='adam', learning_rate=self.lr, loss='categorical_crossentropy', name='targets')
self.model = tflearn.DNN(convnet, tensorboard_dir='log')
if self.alreadySaved == 0:
self.model.fit({'input': X}, {'targets': Y}, n_epoch=nbEpoch, validation_set=({'input': test_x}, {'targets': test_y}), snapshot_step=500, show_metric=True, run_id="model")
self.model.save("./model")
else:
self.model.load("./model", weights_only=True)
return self.model
def predire(self, img, label):
image = array(img).reshape(1, self.img_size,self.img_size,3)
model_out = self.model.predict(image)
rep = 0
if np.argmax(model_out) == np.argmax(label): rep = 1
else: rep = 0
return rep
Here is a part of my main
reseau.setting(X, Y, test_x, test_y, NB_EPOCH)
X = np.array([i[0] for i in test]).reshape(-1,IMG_SIZE,IMG_SIZE,3)
Y = [i[1] for i in test]
cpt = 0
vrai = 0
start_time = time.time()
for i in range(20):
cpt = 0
vrai = 0
start_time = time.time()
for img in tqdm(X):
prediction = reseau.predire(img, Y[cpt])
cpt += 1
if prediction == 1:
vrai += 1
As you can see, I predict the same batch of images 20 times. The first time is always slower than the other ones (without fitting, I predict 82 images the first and then 340 a second, with fitting, it's 255 images the first time and 340 a seconde then).
I'm really out of idea to fix this.
python tensorflow tflearn
python tensorflow tflearn
asked Nov 12 at 8:04
Arlhal
62
62
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53257986%2fprediction-is-slower-when-model-is-loaded-than-if-it-is-fited-during-the-process%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53257986%2fprediction-is-slower-when-model-is-loaded-than-if-it-is-fited-during-the-process%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown