Broadcasting Error when trying to apply transforms.Resize()
I am trying to resize an image in Pytorch for later processing, while training a neural network. But get a broadcasting error, when I try to call transforms.Resize() on the image.
Here is my code snippet.
cuda:0
Classifier(
(fc1): Linear(in_features=784, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=128, bias=True)
(fc3): Linear(in_features=128, out_features=64, bias=True)
(fc4): Linear(in_features=64, out_features=10, bias=True)
)
Traceback (most recent call last):
File "netz.py", line 71, in <module>
train()
File "netz.py", line 46, in train
outputs=model(inputs)
File "/home/yyyy/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 477, in __call__
result = self.forward(*input, **kwargs)
File "netz.py", line 18, in forward
x=F.relu(self.fc1(x))
File "/home/yyy/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 477, in __call__
result = self.forward(*input, **kwargs)
File "/home/yyy/anaconda3/lib/python3.7/site-packages/torch/nn/modules/linear.py", line 55, in forward
return F.linear(input, self.weight, self.bias)
File "/home/yyy/anaconda3/lib/python3.7/site-packages/torch/nn/functional.py", line 1024, in linear
return torch.addmm(bias, input, weight.t())
RuntimeError: size mismatch, m1: [64 x 59536], m2: [784 x 256] at /opt/conda/conda-bld/pytorch_1532584813488/work/aten/src/THC/generic/THCTensorMathBlas.cu:249
---- Corresponding Code ---
import torch
from torch import nn,optim
import torch.nn.functional as F
from torchvision import datasets,transforms
NUM_EPOCH=700
class Classifier(nn.Module):
def __init__(self):
super().__init__()
self.fc1=nn.Linear(784,256)
self.fc2=nn.Linear(256,128)
self.fc3=nn.Linear(128,64)
self.fc4=nn.Linear(64,10)
def forward(self,x):
x=x.view(x.shape[0],-1)
x=F.relu(self.fc1(x))
x=F.relu(self.fc2(x))
x=F.relu(self.fc3(x))
x=F.log_softmax(self.fc4(x),dim=1)
return x
def train():
transform=transforms.Compose([
transforms.Resize(244),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))])
trainset=datasets.FashionMNIST('./data',download=True,transform=transform)
trainloader=torch.utils.data.DataLoader(trainset,batch_size=64,shuffle=True,num_workers=2)
model=Classifier()
model=model.to(device)
criterion=nn.CrossEntropyLoss()
optimizer=optim.Adam(model.parameters(),lr=0.001)
for epoch in range(NUM_EPOCH):
running_loss=0.0
for i, data in enumerate(trainloader,0):
inputs,labels=data
inputs=inputs.to(device)
labels=labels.to(device)
optimizer.zero_grad()
outputs=model(inputs)
outputs.to(device)
loss=criterion(outputs,labels)
loss.backward()
optimizer.step()
running_loss+=loss.item()
if(i%20 == 19):
print("epoch: ",epoch+1)
print("i + 1",i)
print("loss: ",running_loss/20.0)
#print('[%d, 5d] loss: %.3f' %(epoch+1,i+1,running_loss/20))
running_loss=0.0
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
net=Classifier()
net.to(device)
print(net)
train()
So my question is, what is the most appropriate way to resize images while I am
training the network for my particular use case?
I am using Cuda8.0 and CudaDNN7.1 with Pytorch version 0.4.1 and Python3.7 on Ubuntu 16.04 LTS system.
python neural-network pytorch
add a comment |
I am trying to resize an image in Pytorch for later processing, while training a neural network. But get a broadcasting error, when I try to call transforms.Resize() on the image.
Here is my code snippet.
cuda:0
Classifier(
(fc1): Linear(in_features=784, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=128, bias=True)
(fc3): Linear(in_features=128, out_features=64, bias=True)
(fc4): Linear(in_features=64, out_features=10, bias=True)
)
Traceback (most recent call last):
File "netz.py", line 71, in <module>
train()
File "netz.py", line 46, in train
outputs=model(inputs)
File "/home/yyyy/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 477, in __call__
result = self.forward(*input, **kwargs)
File "netz.py", line 18, in forward
x=F.relu(self.fc1(x))
File "/home/yyy/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 477, in __call__
result = self.forward(*input, **kwargs)
File "/home/yyy/anaconda3/lib/python3.7/site-packages/torch/nn/modules/linear.py", line 55, in forward
return F.linear(input, self.weight, self.bias)
File "/home/yyy/anaconda3/lib/python3.7/site-packages/torch/nn/functional.py", line 1024, in linear
return torch.addmm(bias, input, weight.t())
RuntimeError: size mismatch, m1: [64 x 59536], m2: [784 x 256] at /opt/conda/conda-bld/pytorch_1532584813488/work/aten/src/THC/generic/THCTensorMathBlas.cu:249
---- Corresponding Code ---
import torch
from torch import nn,optim
import torch.nn.functional as F
from torchvision import datasets,transforms
NUM_EPOCH=700
class Classifier(nn.Module):
def __init__(self):
super().__init__()
self.fc1=nn.Linear(784,256)
self.fc2=nn.Linear(256,128)
self.fc3=nn.Linear(128,64)
self.fc4=nn.Linear(64,10)
def forward(self,x):
x=x.view(x.shape[0],-1)
x=F.relu(self.fc1(x))
x=F.relu(self.fc2(x))
x=F.relu(self.fc3(x))
x=F.log_softmax(self.fc4(x),dim=1)
return x
def train():
transform=transforms.Compose([
transforms.Resize(244),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))])
trainset=datasets.FashionMNIST('./data',download=True,transform=transform)
trainloader=torch.utils.data.DataLoader(trainset,batch_size=64,shuffle=True,num_workers=2)
model=Classifier()
model=model.to(device)
criterion=nn.CrossEntropyLoss()
optimizer=optim.Adam(model.parameters(),lr=0.001)
for epoch in range(NUM_EPOCH):
running_loss=0.0
for i, data in enumerate(trainloader,0):
inputs,labels=data
inputs=inputs.to(device)
labels=labels.to(device)
optimizer.zero_grad()
outputs=model(inputs)
outputs.to(device)
loss=criterion(outputs,labels)
loss.backward()
optimizer.step()
running_loss+=loss.item()
if(i%20 == 19):
print("epoch: ",epoch+1)
print("i + 1",i)
print("loss: ",running_loss/20.0)
#print('[%d, 5d] loss: %.3f' %(epoch+1,i+1,running_loss/20))
running_loss=0.0
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
net=Classifier()
net.to(device)
print(net)
train()
So my question is, what is the most appropriate way to resize images while I am
training the network for my particular use case?
I am using Cuda8.0 and CudaDNN7.1 with Pytorch version 0.4.1 and Python3.7 on Ubuntu 16.04 LTS system.
python neural-network pytorch
add a comment |
I am trying to resize an image in Pytorch for later processing, while training a neural network. But get a broadcasting error, when I try to call transforms.Resize() on the image.
Here is my code snippet.
cuda:0
Classifier(
(fc1): Linear(in_features=784, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=128, bias=True)
(fc3): Linear(in_features=128, out_features=64, bias=True)
(fc4): Linear(in_features=64, out_features=10, bias=True)
)
Traceback (most recent call last):
File "netz.py", line 71, in <module>
train()
File "netz.py", line 46, in train
outputs=model(inputs)
File "/home/yyyy/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 477, in __call__
result = self.forward(*input, **kwargs)
File "netz.py", line 18, in forward
x=F.relu(self.fc1(x))
File "/home/yyy/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 477, in __call__
result = self.forward(*input, **kwargs)
File "/home/yyy/anaconda3/lib/python3.7/site-packages/torch/nn/modules/linear.py", line 55, in forward
return F.linear(input, self.weight, self.bias)
File "/home/yyy/anaconda3/lib/python3.7/site-packages/torch/nn/functional.py", line 1024, in linear
return torch.addmm(bias, input, weight.t())
RuntimeError: size mismatch, m1: [64 x 59536], m2: [784 x 256] at /opt/conda/conda-bld/pytorch_1532584813488/work/aten/src/THC/generic/THCTensorMathBlas.cu:249
---- Corresponding Code ---
import torch
from torch import nn,optim
import torch.nn.functional as F
from torchvision import datasets,transforms
NUM_EPOCH=700
class Classifier(nn.Module):
def __init__(self):
super().__init__()
self.fc1=nn.Linear(784,256)
self.fc2=nn.Linear(256,128)
self.fc3=nn.Linear(128,64)
self.fc4=nn.Linear(64,10)
def forward(self,x):
x=x.view(x.shape[0],-1)
x=F.relu(self.fc1(x))
x=F.relu(self.fc2(x))
x=F.relu(self.fc3(x))
x=F.log_softmax(self.fc4(x),dim=1)
return x
def train():
transform=transforms.Compose([
transforms.Resize(244),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))])
trainset=datasets.FashionMNIST('./data',download=True,transform=transform)
trainloader=torch.utils.data.DataLoader(trainset,batch_size=64,shuffle=True,num_workers=2)
model=Classifier()
model=model.to(device)
criterion=nn.CrossEntropyLoss()
optimizer=optim.Adam(model.parameters(),lr=0.001)
for epoch in range(NUM_EPOCH):
running_loss=0.0
for i, data in enumerate(trainloader,0):
inputs,labels=data
inputs=inputs.to(device)
labels=labels.to(device)
optimizer.zero_grad()
outputs=model(inputs)
outputs.to(device)
loss=criterion(outputs,labels)
loss.backward()
optimizer.step()
running_loss+=loss.item()
if(i%20 == 19):
print("epoch: ",epoch+1)
print("i + 1",i)
print("loss: ",running_loss/20.0)
#print('[%d, 5d] loss: %.3f' %(epoch+1,i+1,running_loss/20))
running_loss=0.0
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
net=Classifier()
net.to(device)
print(net)
train()
So my question is, what is the most appropriate way to resize images while I am
training the network for my particular use case?
I am using Cuda8.0 and CudaDNN7.1 with Pytorch version 0.4.1 and Python3.7 on Ubuntu 16.04 LTS system.
python neural-network pytorch
I am trying to resize an image in Pytorch for later processing, while training a neural network. But get a broadcasting error, when I try to call transforms.Resize() on the image.
Here is my code snippet.
cuda:0
Classifier(
(fc1): Linear(in_features=784, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=128, bias=True)
(fc3): Linear(in_features=128, out_features=64, bias=True)
(fc4): Linear(in_features=64, out_features=10, bias=True)
)
Traceback (most recent call last):
File "netz.py", line 71, in <module>
train()
File "netz.py", line 46, in train
outputs=model(inputs)
File "/home/yyyy/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 477, in __call__
result = self.forward(*input, **kwargs)
File "netz.py", line 18, in forward
x=F.relu(self.fc1(x))
File "/home/yyy/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 477, in __call__
result = self.forward(*input, **kwargs)
File "/home/yyy/anaconda3/lib/python3.7/site-packages/torch/nn/modules/linear.py", line 55, in forward
return F.linear(input, self.weight, self.bias)
File "/home/yyy/anaconda3/lib/python3.7/site-packages/torch/nn/functional.py", line 1024, in linear
return torch.addmm(bias, input, weight.t())
RuntimeError: size mismatch, m1: [64 x 59536], m2: [784 x 256] at /opt/conda/conda-bld/pytorch_1532584813488/work/aten/src/THC/generic/THCTensorMathBlas.cu:249
---- Corresponding Code ---
import torch
from torch import nn,optim
import torch.nn.functional as F
from torchvision import datasets,transforms
NUM_EPOCH=700
class Classifier(nn.Module):
def __init__(self):
super().__init__()
self.fc1=nn.Linear(784,256)
self.fc2=nn.Linear(256,128)
self.fc3=nn.Linear(128,64)
self.fc4=nn.Linear(64,10)
def forward(self,x):
x=x.view(x.shape[0],-1)
x=F.relu(self.fc1(x))
x=F.relu(self.fc2(x))
x=F.relu(self.fc3(x))
x=F.log_softmax(self.fc4(x),dim=1)
return x
def train():
transform=transforms.Compose([
transforms.Resize(244),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))])
trainset=datasets.FashionMNIST('./data',download=True,transform=transform)
trainloader=torch.utils.data.DataLoader(trainset,batch_size=64,shuffle=True,num_workers=2)
model=Classifier()
model=model.to(device)
criterion=nn.CrossEntropyLoss()
optimizer=optim.Adam(model.parameters(),lr=0.001)
for epoch in range(NUM_EPOCH):
running_loss=0.0
for i, data in enumerate(trainloader,0):
inputs,labels=data
inputs=inputs.to(device)
labels=labels.to(device)
optimizer.zero_grad()
outputs=model(inputs)
outputs.to(device)
loss=criterion(outputs,labels)
loss.backward()
optimizer.step()
running_loss+=loss.item()
if(i%20 == 19):
print("epoch: ",epoch+1)
print("i + 1",i)
print("loss: ",running_loss/20.0)
#print('[%d, 5d] loss: %.3f' %(epoch+1,i+1,running_loss/20))
running_loss=0.0
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
net=Classifier()
net.to(device)
print(net)
train()
So my question is, what is the most appropriate way to resize images while I am
training the network for my particular use case?
I am using Cuda8.0 and CudaDNN7.1 with Pytorch version 0.4.1 and Python3.7 on Ubuntu 16.04 LTS system.
python neural-network pytorch
python neural-network pytorch
asked Nov 12 at 7:37
user38041
32
32
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53257658%2fbroadcasting-error-when-trying-to-apply-transforms-resize%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53257658%2fbroadcasting-error-when-trying-to-apply-transforms-resize%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown