Pandas DataFrame Calculate time difference between 2 columns on specific time range












-1














I want to calculate time difference between two columns on specific time range.



I try df.between_time but it only works on index.



Ex. Time range: between 18.00 - 8.00



Data :



             start               stop
0 2018-07-16 16:00:00 2018-07-16 20:00:00
1 2018-07-11 08:03:00 2018-07-11 12:03:00
2 2018-07-13 17:54:00 2018-07-13 21:54:00
3 2018-07-14 13:09:00 2018-07-14 17:09:00
4 2018-07-20 00:21:00 2018-07-20 04:21:00
5 2018-07-20 17:00:00 2018-07-21 09:00:00


Expect Result :



          start                  stop           time_diff
0 2018-07-16 16:00:00 2018-07-16 20:00:00 02:00:00
1 2018-07-11 08:03:00 2018-07-11 12:03:00 0
2 2018-07-13 17:54:00 2018-07-13 21:54:00 03:54:00
3 2018-07-14 13:09:00 2018-07-14 17:09:00 0
4 2018-07-20 00:21:00 2018-07-20 04:21:00 04:00:00
5 2018-07-20 17:00:00 2018-07-21 09:00:00 14:00:00


Note: If time_diff > 1 days, I already deal with that case.



Question: Should I build a function to do this or there are pandas build-in function to do this? Any help or guide would be appreciated.










share|improve this question
























  • What is df.dtypes?
    – timgeb
    Nov 12 at 7:49






  • 1




    @timgeb I convert it to datetime by using pd.to_datetime
    – yolox
    Nov 12 at 7:51






  • 1




    Ok. I don't understand how you get to those expected valules. For example, the times in the first row are 4 hours apart, how do you get 2?
    – timgeb
    Nov 12 at 7:53










  • @timegeb if time exceeds 18.00 only use 18.00 to calculate. Sorry for not clear question.
    – yolox
    Nov 12 at 7:57












  • Ok and in the second row both times are between 8 and 18. Why is their difference 0?
    – timgeb
    Nov 12 at 7:59
















-1














I want to calculate time difference between two columns on specific time range.



I try df.between_time but it only works on index.



Ex. Time range: between 18.00 - 8.00



Data :



             start               stop
0 2018-07-16 16:00:00 2018-07-16 20:00:00
1 2018-07-11 08:03:00 2018-07-11 12:03:00
2 2018-07-13 17:54:00 2018-07-13 21:54:00
3 2018-07-14 13:09:00 2018-07-14 17:09:00
4 2018-07-20 00:21:00 2018-07-20 04:21:00
5 2018-07-20 17:00:00 2018-07-21 09:00:00


Expect Result :



          start                  stop           time_diff
0 2018-07-16 16:00:00 2018-07-16 20:00:00 02:00:00
1 2018-07-11 08:03:00 2018-07-11 12:03:00 0
2 2018-07-13 17:54:00 2018-07-13 21:54:00 03:54:00
3 2018-07-14 13:09:00 2018-07-14 17:09:00 0
4 2018-07-20 00:21:00 2018-07-20 04:21:00 04:00:00
5 2018-07-20 17:00:00 2018-07-21 09:00:00 14:00:00


Note: If time_diff > 1 days, I already deal with that case.



Question: Should I build a function to do this or there are pandas build-in function to do this? Any help or guide would be appreciated.










share|improve this question
























  • What is df.dtypes?
    – timgeb
    Nov 12 at 7:49






  • 1




    @timgeb I convert it to datetime by using pd.to_datetime
    – yolox
    Nov 12 at 7:51






  • 1




    Ok. I don't understand how you get to those expected valules. For example, the times in the first row are 4 hours apart, how do you get 2?
    – timgeb
    Nov 12 at 7:53










  • @timegeb if time exceeds 18.00 only use 18.00 to calculate. Sorry for not clear question.
    – yolox
    Nov 12 at 7:57












  • Ok and in the second row both times are between 8 and 18. Why is their difference 0?
    – timgeb
    Nov 12 at 7:59














-1












-1








-1


1





I want to calculate time difference between two columns on specific time range.



I try df.between_time but it only works on index.



Ex. Time range: between 18.00 - 8.00



Data :



             start               stop
0 2018-07-16 16:00:00 2018-07-16 20:00:00
1 2018-07-11 08:03:00 2018-07-11 12:03:00
2 2018-07-13 17:54:00 2018-07-13 21:54:00
3 2018-07-14 13:09:00 2018-07-14 17:09:00
4 2018-07-20 00:21:00 2018-07-20 04:21:00
5 2018-07-20 17:00:00 2018-07-21 09:00:00


Expect Result :



          start                  stop           time_diff
0 2018-07-16 16:00:00 2018-07-16 20:00:00 02:00:00
1 2018-07-11 08:03:00 2018-07-11 12:03:00 0
2 2018-07-13 17:54:00 2018-07-13 21:54:00 03:54:00
3 2018-07-14 13:09:00 2018-07-14 17:09:00 0
4 2018-07-20 00:21:00 2018-07-20 04:21:00 04:00:00
5 2018-07-20 17:00:00 2018-07-21 09:00:00 14:00:00


Note: If time_diff > 1 days, I already deal with that case.



Question: Should I build a function to do this or there are pandas build-in function to do this? Any help or guide would be appreciated.










share|improve this question















I want to calculate time difference between two columns on specific time range.



I try df.between_time but it only works on index.



Ex. Time range: between 18.00 - 8.00



Data :



             start               stop
0 2018-07-16 16:00:00 2018-07-16 20:00:00
1 2018-07-11 08:03:00 2018-07-11 12:03:00
2 2018-07-13 17:54:00 2018-07-13 21:54:00
3 2018-07-14 13:09:00 2018-07-14 17:09:00
4 2018-07-20 00:21:00 2018-07-20 04:21:00
5 2018-07-20 17:00:00 2018-07-21 09:00:00


Expect Result :



          start                  stop           time_diff
0 2018-07-16 16:00:00 2018-07-16 20:00:00 02:00:00
1 2018-07-11 08:03:00 2018-07-11 12:03:00 0
2 2018-07-13 17:54:00 2018-07-13 21:54:00 03:54:00
3 2018-07-14 13:09:00 2018-07-14 17:09:00 0
4 2018-07-20 00:21:00 2018-07-20 04:21:00 04:00:00
5 2018-07-20 17:00:00 2018-07-21 09:00:00 14:00:00


Note: If time_diff > 1 days, I already deal with that case.



Question: Should I build a function to do this or there are pandas build-in function to do this? Any help or guide would be appreciated.







python pandas datetime






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 12 at 9:18

























asked Nov 12 at 7:43









yolox

438




438












  • What is df.dtypes?
    – timgeb
    Nov 12 at 7:49






  • 1




    @timgeb I convert it to datetime by using pd.to_datetime
    – yolox
    Nov 12 at 7:51






  • 1




    Ok. I don't understand how you get to those expected valules. For example, the times in the first row are 4 hours apart, how do you get 2?
    – timgeb
    Nov 12 at 7:53










  • @timegeb if time exceeds 18.00 only use 18.00 to calculate. Sorry for not clear question.
    – yolox
    Nov 12 at 7:57












  • Ok and in the second row both times are between 8 and 18. Why is their difference 0?
    – timgeb
    Nov 12 at 7:59


















  • What is df.dtypes?
    – timgeb
    Nov 12 at 7:49






  • 1




    @timgeb I convert it to datetime by using pd.to_datetime
    – yolox
    Nov 12 at 7:51






  • 1




    Ok. I don't understand how you get to those expected valules. For example, the times in the first row are 4 hours apart, how do you get 2?
    – timgeb
    Nov 12 at 7:53










  • @timegeb if time exceeds 18.00 only use 18.00 to calculate. Sorry for not clear question.
    – yolox
    Nov 12 at 7:57












  • Ok and in the second row both times are between 8 and 18. Why is their difference 0?
    – timgeb
    Nov 12 at 7:59
















What is df.dtypes?
– timgeb
Nov 12 at 7:49




What is df.dtypes?
– timgeb
Nov 12 at 7:49




1




1




@timgeb I convert it to datetime by using pd.to_datetime
– yolox
Nov 12 at 7:51




@timgeb I convert it to datetime by using pd.to_datetime
– yolox
Nov 12 at 7:51




1




1




Ok. I don't understand how you get to those expected valules. For example, the times in the first row are 4 hours apart, how do you get 2?
– timgeb
Nov 12 at 7:53




Ok. I don't understand how you get to those expected valules. For example, the times in the first row are 4 hours apart, how do you get 2?
– timgeb
Nov 12 at 7:53












@timegeb if time exceeds 18.00 only use 18.00 to calculate. Sorry for not clear question.
– yolox
Nov 12 at 7:57






@timegeb if time exceeds 18.00 only use 18.00 to calculate. Sorry for not clear question.
– yolox
Nov 12 at 7:57














Ok and in the second row both times are between 8 and 18. Why is their difference 0?
– timgeb
Nov 12 at 7:59




Ok and in the second row both times are between 8 and 18. Why is their difference 0?
– timgeb
Nov 12 at 7:59












1 Answer
1






active

oldest

votes


















1














I think this can be a solution



tmp = pd.DataFrame({'time1': pd.to_datetime(['2018-07-16 16:00:00', '2018-07-11 08:03:00', 
'2018-07-13 17:54:00', '2018-07-14 13:09:00',
'2018-07-20 00:21:00', '2018-07-20 17:00:00']),
'time2': pd.to_datetime(['2018-07-16 20:00:00', '2018-07-11 12:03:00',
'2018-07-13 21:54:00', '2018-07-14 17:09:00',
'2018-07-20 04:21:00', '2018-07-21 09:00:00'])})
time1_date = tmp.time1.dt.date.astype(str)
tmp['rule18'], tmp['rule08'] = pd.to_datetime(time1_date + ' 18:00:00'), pd.to_datetime(time1_date + ' 08:00:00')
# if stop exceeds 18:00:00, compute time difference from this hour
tmp['time_diff_rule1'] = np.where(tmp.time2 > tmp.rule18, (tmp.time2 - tmp.rule18), (tmp.time2 - tmp.time1))
# rearrange the dataframe with your second rule
tmp['time_diff_rule2'] = np.where((tmp.time2 < tmp.rule18) & (tmp.time1 > tmp.rule08), 0, tmp['time_diff_rule1'])

time_diff_rule1 time_diff_rule2
0 02:00:00 02:00:00
1 04:00:00 00:00:00
2 03:54:00 03:54:00
3 04:00:00 00:00:00
4 04:00:00 04:00:00
5 15:00:00 15:00:00





share|improve this answer





















  • Thanks for the answer but I think the last row should be 14:00:00.
    – yolox
    Nov 12 at 8:49










  • why do you think that ?
    – J. Doe
    Nov 12 at 9:09










  • If it in my case I guess it should be like this pd.to_datetime('2018-07-21 08:00:00') - pd.to_datetime('2018-07-20 18:00:00') give 14:00:00
    – yolox
    Nov 12 at 9:19










  • in your example the last row is pd.to_datetime('2018-07-21 09:00:00') - pd.to_datetime('2018-07-20 17:00:00') which is 16:00:00 but with rule18 it becomes 15:00:00
    – J. Doe
    Nov 12 at 9:39












  • because if time exceed 08:00:00 it should be convert to 08:00:00. Thank you for providing the example dataframe.
    – yolox
    Nov 12 at 10:02













Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53257733%2fpandas-dataframe-calculate-time-difference-between-2-columns-on-specific-time-ra%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1














I think this can be a solution



tmp = pd.DataFrame({'time1': pd.to_datetime(['2018-07-16 16:00:00', '2018-07-11 08:03:00', 
'2018-07-13 17:54:00', '2018-07-14 13:09:00',
'2018-07-20 00:21:00', '2018-07-20 17:00:00']),
'time2': pd.to_datetime(['2018-07-16 20:00:00', '2018-07-11 12:03:00',
'2018-07-13 21:54:00', '2018-07-14 17:09:00',
'2018-07-20 04:21:00', '2018-07-21 09:00:00'])})
time1_date = tmp.time1.dt.date.astype(str)
tmp['rule18'], tmp['rule08'] = pd.to_datetime(time1_date + ' 18:00:00'), pd.to_datetime(time1_date + ' 08:00:00')
# if stop exceeds 18:00:00, compute time difference from this hour
tmp['time_diff_rule1'] = np.where(tmp.time2 > tmp.rule18, (tmp.time2 - tmp.rule18), (tmp.time2 - tmp.time1))
# rearrange the dataframe with your second rule
tmp['time_diff_rule2'] = np.where((tmp.time2 < tmp.rule18) & (tmp.time1 > tmp.rule08), 0, tmp['time_diff_rule1'])

time_diff_rule1 time_diff_rule2
0 02:00:00 02:00:00
1 04:00:00 00:00:00
2 03:54:00 03:54:00
3 04:00:00 00:00:00
4 04:00:00 04:00:00
5 15:00:00 15:00:00





share|improve this answer





















  • Thanks for the answer but I think the last row should be 14:00:00.
    – yolox
    Nov 12 at 8:49










  • why do you think that ?
    – J. Doe
    Nov 12 at 9:09










  • If it in my case I guess it should be like this pd.to_datetime('2018-07-21 08:00:00') - pd.to_datetime('2018-07-20 18:00:00') give 14:00:00
    – yolox
    Nov 12 at 9:19










  • in your example the last row is pd.to_datetime('2018-07-21 09:00:00') - pd.to_datetime('2018-07-20 17:00:00') which is 16:00:00 but with rule18 it becomes 15:00:00
    – J. Doe
    Nov 12 at 9:39












  • because if time exceed 08:00:00 it should be convert to 08:00:00. Thank you for providing the example dataframe.
    – yolox
    Nov 12 at 10:02


















1














I think this can be a solution



tmp = pd.DataFrame({'time1': pd.to_datetime(['2018-07-16 16:00:00', '2018-07-11 08:03:00', 
'2018-07-13 17:54:00', '2018-07-14 13:09:00',
'2018-07-20 00:21:00', '2018-07-20 17:00:00']),
'time2': pd.to_datetime(['2018-07-16 20:00:00', '2018-07-11 12:03:00',
'2018-07-13 21:54:00', '2018-07-14 17:09:00',
'2018-07-20 04:21:00', '2018-07-21 09:00:00'])})
time1_date = tmp.time1.dt.date.astype(str)
tmp['rule18'], tmp['rule08'] = pd.to_datetime(time1_date + ' 18:00:00'), pd.to_datetime(time1_date + ' 08:00:00')
# if stop exceeds 18:00:00, compute time difference from this hour
tmp['time_diff_rule1'] = np.where(tmp.time2 > tmp.rule18, (tmp.time2 - tmp.rule18), (tmp.time2 - tmp.time1))
# rearrange the dataframe with your second rule
tmp['time_diff_rule2'] = np.where((tmp.time2 < tmp.rule18) & (tmp.time1 > tmp.rule08), 0, tmp['time_diff_rule1'])

time_diff_rule1 time_diff_rule2
0 02:00:00 02:00:00
1 04:00:00 00:00:00
2 03:54:00 03:54:00
3 04:00:00 00:00:00
4 04:00:00 04:00:00
5 15:00:00 15:00:00





share|improve this answer





















  • Thanks for the answer but I think the last row should be 14:00:00.
    – yolox
    Nov 12 at 8:49










  • why do you think that ?
    – J. Doe
    Nov 12 at 9:09










  • If it in my case I guess it should be like this pd.to_datetime('2018-07-21 08:00:00') - pd.to_datetime('2018-07-20 18:00:00') give 14:00:00
    – yolox
    Nov 12 at 9:19










  • in your example the last row is pd.to_datetime('2018-07-21 09:00:00') - pd.to_datetime('2018-07-20 17:00:00') which is 16:00:00 but with rule18 it becomes 15:00:00
    – J. Doe
    Nov 12 at 9:39












  • because if time exceed 08:00:00 it should be convert to 08:00:00. Thank you for providing the example dataframe.
    – yolox
    Nov 12 at 10:02
















1












1








1






I think this can be a solution



tmp = pd.DataFrame({'time1': pd.to_datetime(['2018-07-16 16:00:00', '2018-07-11 08:03:00', 
'2018-07-13 17:54:00', '2018-07-14 13:09:00',
'2018-07-20 00:21:00', '2018-07-20 17:00:00']),
'time2': pd.to_datetime(['2018-07-16 20:00:00', '2018-07-11 12:03:00',
'2018-07-13 21:54:00', '2018-07-14 17:09:00',
'2018-07-20 04:21:00', '2018-07-21 09:00:00'])})
time1_date = tmp.time1.dt.date.astype(str)
tmp['rule18'], tmp['rule08'] = pd.to_datetime(time1_date + ' 18:00:00'), pd.to_datetime(time1_date + ' 08:00:00')
# if stop exceeds 18:00:00, compute time difference from this hour
tmp['time_diff_rule1'] = np.where(tmp.time2 > tmp.rule18, (tmp.time2 - tmp.rule18), (tmp.time2 - tmp.time1))
# rearrange the dataframe with your second rule
tmp['time_diff_rule2'] = np.where((tmp.time2 < tmp.rule18) & (tmp.time1 > tmp.rule08), 0, tmp['time_diff_rule1'])

time_diff_rule1 time_diff_rule2
0 02:00:00 02:00:00
1 04:00:00 00:00:00
2 03:54:00 03:54:00
3 04:00:00 00:00:00
4 04:00:00 04:00:00
5 15:00:00 15:00:00





share|improve this answer












I think this can be a solution



tmp = pd.DataFrame({'time1': pd.to_datetime(['2018-07-16 16:00:00', '2018-07-11 08:03:00', 
'2018-07-13 17:54:00', '2018-07-14 13:09:00',
'2018-07-20 00:21:00', '2018-07-20 17:00:00']),
'time2': pd.to_datetime(['2018-07-16 20:00:00', '2018-07-11 12:03:00',
'2018-07-13 21:54:00', '2018-07-14 17:09:00',
'2018-07-20 04:21:00', '2018-07-21 09:00:00'])})
time1_date = tmp.time1.dt.date.astype(str)
tmp['rule18'], tmp['rule08'] = pd.to_datetime(time1_date + ' 18:00:00'), pd.to_datetime(time1_date + ' 08:00:00')
# if stop exceeds 18:00:00, compute time difference from this hour
tmp['time_diff_rule1'] = np.where(tmp.time2 > tmp.rule18, (tmp.time2 - tmp.rule18), (tmp.time2 - tmp.time1))
# rearrange the dataframe with your second rule
tmp['time_diff_rule2'] = np.where((tmp.time2 < tmp.rule18) & (tmp.time1 > tmp.rule08), 0, tmp['time_diff_rule1'])

time_diff_rule1 time_diff_rule2
0 02:00:00 02:00:00
1 04:00:00 00:00:00
2 03:54:00 03:54:00
3 04:00:00 00:00:00
4 04:00:00 04:00:00
5 15:00:00 15:00:00






share|improve this answer












share|improve this answer



share|improve this answer










answered Nov 12 at 8:38









J. Doe

935421




935421












  • Thanks for the answer but I think the last row should be 14:00:00.
    – yolox
    Nov 12 at 8:49










  • why do you think that ?
    – J. Doe
    Nov 12 at 9:09










  • If it in my case I guess it should be like this pd.to_datetime('2018-07-21 08:00:00') - pd.to_datetime('2018-07-20 18:00:00') give 14:00:00
    – yolox
    Nov 12 at 9:19










  • in your example the last row is pd.to_datetime('2018-07-21 09:00:00') - pd.to_datetime('2018-07-20 17:00:00') which is 16:00:00 but with rule18 it becomes 15:00:00
    – J. Doe
    Nov 12 at 9:39












  • because if time exceed 08:00:00 it should be convert to 08:00:00. Thank you for providing the example dataframe.
    – yolox
    Nov 12 at 10:02




















  • Thanks for the answer but I think the last row should be 14:00:00.
    – yolox
    Nov 12 at 8:49










  • why do you think that ?
    – J. Doe
    Nov 12 at 9:09










  • If it in my case I guess it should be like this pd.to_datetime('2018-07-21 08:00:00') - pd.to_datetime('2018-07-20 18:00:00') give 14:00:00
    – yolox
    Nov 12 at 9:19










  • in your example the last row is pd.to_datetime('2018-07-21 09:00:00') - pd.to_datetime('2018-07-20 17:00:00') which is 16:00:00 but with rule18 it becomes 15:00:00
    – J. Doe
    Nov 12 at 9:39












  • because if time exceed 08:00:00 it should be convert to 08:00:00. Thank you for providing the example dataframe.
    – yolox
    Nov 12 at 10:02


















Thanks for the answer but I think the last row should be 14:00:00.
– yolox
Nov 12 at 8:49




Thanks for the answer but I think the last row should be 14:00:00.
– yolox
Nov 12 at 8:49












why do you think that ?
– J. Doe
Nov 12 at 9:09




why do you think that ?
– J. Doe
Nov 12 at 9:09












If it in my case I guess it should be like this pd.to_datetime('2018-07-21 08:00:00') - pd.to_datetime('2018-07-20 18:00:00') give 14:00:00
– yolox
Nov 12 at 9:19




If it in my case I guess it should be like this pd.to_datetime('2018-07-21 08:00:00') - pd.to_datetime('2018-07-20 18:00:00') give 14:00:00
– yolox
Nov 12 at 9:19












in your example the last row is pd.to_datetime('2018-07-21 09:00:00') - pd.to_datetime('2018-07-20 17:00:00') which is 16:00:00 but with rule18 it becomes 15:00:00
– J. Doe
Nov 12 at 9:39






in your example the last row is pd.to_datetime('2018-07-21 09:00:00') - pd.to_datetime('2018-07-20 17:00:00') which is 16:00:00 but with rule18 it becomes 15:00:00
– J. Doe
Nov 12 at 9:39














because if time exceed 08:00:00 it should be convert to 08:00:00. Thank you for providing the example dataframe.
– yolox
Nov 12 at 10:02






because if time exceed 08:00:00 it should be convert to 08:00:00. Thank you for providing the example dataframe.
– yolox
Nov 12 at 10:02




















draft saved

draft discarded




















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53257733%2fpandas-dataframe-calculate-time-difference-between-2-columns-on-specific-time-ra%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Florida Star v. B. J. F.

Danny Elfman

Retrieve a Users Dashboard in Tumblr with R and TumblR. Oauth Issues