How to solve Markov transition rate matrix?
I have some variables to find like x= [1x16 (x1,x2,x3,....x16 variables)] with condition that x1+x2+x3+....x16=1. I have also 16x16 matrix Q= [16x16 (real values)].
I need to solve the equation 'x*Q=x' as shown here. How can I solve it in Matlab or in any other language easily?
matlab matrix markov-chains markov-models
add a comment |
I have some variables to find like x= [1x16 (x1,x2,x3,....x16 variables)] with condition that x1+x2+x3+....x16=1. I have also 16x16 matrix Q= [16x16 (real values)].
I need to solve the equation 'x*Q=x' as shown here. How can I solve it in Matlab or in any other language easily?
matlab matrix markov-chains markov-models
add a comment |
I have some variables to find like x= [1x16 (x1,x2,x3,....x16 variables)] with condition that x1+x2+x3+....x16=1. I have also 16x16 matrix Q= [16x16 (real values)].
I need to solve the equation 'x*Q=x' as shown here. How can I solve it in Matlab or in any other language easily?
matlab matrix markov-chains markov-models
I have some variables to find like x= [1x16 (x1,x2,x3,....x16 variables)] with condition that x1+x2+x3+....x16=1. I have also 16x16 matrix Q= [16x16 (real values)].
I need to solve the equation 'x*Q=x' as shown here. How can I solve it in Matlab or in any other language easily?
matlab matrix markov-chains markov-models
matlab matrix markov-chains markov-models
edited Nov 15 '18 at 6:40
Billal Begueradj
5,966132843
5,966132843
asked Nov 15 '18 at 5:36
Abdullah1Abdullah1
134
134
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
By transposition, your equation is equivalent to Q'y=1y where y:=x' (a column vector) where Q' is the transpose of Q (matlab notation...) which means that y is an eigenvector associated with eigenvalue 1 for matrix Q'. Such an eigenvector always exists for a Markov matrix. Let s be the sum of the entries of column vector y. Two cases can occur :
either s is not 0 ; then it suffices to divide all coordinates of y by s : we obtain a vector that is still an eigenvector, with a coordinate sum equal to 1.
or s=0 and there is no solution to your problem.
Here is a Matlab program that does the work for a 3 x 3 matrix :
M=[.2 .3 .5
.1 .8 .1
.4 .4 .2]
[P,D]=eig(M')
Y=P(:,3)
M'*Y - Y,% should be 0
Z=Y/sum(Y),%the sum of Z's coordinates is 1
M'*Z-Z,% should be 0
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53313052%2fhow-to-solve-markov-transition-rate-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
By transposition, your equation is equivalent to Q'y=1y where y:=x' (a column vector) where Q' is the transpose of Q (matlab notation...) which means that y is an eigenvector associated with eigenvalue 1 for matrix Q'. Such an eigenvector always exists for a Markov matrix. Let s be the sum of the entries of column vector y. Two cases can occur :
either s is not 0 ; then it suffices to divide all coordinates of y by s : we obtain a vector that is still an eigenvector, with a coordinate sum equal to 1.
or s=0 and there is no solution to your problem.
Here is a Matlab program that does the work for a 3 x 3 matrix :
M=[.2 .3 .5
.1 .8 .1
.4 .4 .2]
[P,D]=eig(M')
Y=P(:,3)
M'*Y - Y,% should be 0
Z=Y/sum(Y),%the sum of Z's coordinates is 1
M'*Z-Z,% should be 0
add a comment |
By transposition, your equation is equivalent to Q'y=1y where y:=x' (a column vector) where Q' is the transpose of Q (matlab notation...) which means that y is an eigenvector associated with eigenvalue 1 for matrix Q'. Such an eigenvector always exists for a Markov matrix. Let s be the sum of the entries of column vector y. Two cases can occur :
either s is not 0 ; then it suffices to divide all coordinates of y by s : we obtain a vector that is still an eigenvector, with a coordinate sum equal to 1.
or s=0 and there is no solution to your problem.
Here is a Matlab program that does the work for a 3 x 3 matrix :
M=[.2 .3 .5
.1 .8 .1
.4 .4 .2]
[P,D]=eig(M')
Y=P(:,3)
M'*Y - Y,% should be 0
Z=Y/sum(Y),%the sum of Z's coordinates is 1
M'*Z-Z,% should be 0
add a comment |
By transposition, your equation is equivalent to Q'y=1y where y:=x' (a column vector) where Q' is the transpose of Q (matlab notation...) which means that y is an eigenvector associated with eigenvalue 1 for matrix Q'. Such an eigenvector always exists for a Markov matrix. Let s be the sum of the entries of column vector y. Two cases can occur :
either s is not 0 ; then it suffices to divide all coordinates of y by s : we obtain a vector that is still an eigenvector, with a coordinate sum equal to 1.
or s=0 and there is no solution to your problem.
Here is a Matlab program that does the work for a 3 x 3 matrix :
M=[.2 .3 .5
.1 .8 .1
.4 .4 .2]
[P,D]=eig(M')
Y=P(:,3)
M'*Y - Y,% should be 0
Z=Y/sum(Y),%the sum of Z's coordinates is 1
M'*Z-Z,% should be 0
By transposition, your equation is equivalent to Q'y=1y where y:=x' (a column vector) where Q' is the transpose of Q (matlab notation...) which means that y is an eigenvector associated with eigenvalue 1 for matrix Q'. Such an eigenvector always exists for a Markov matrix. Let s be the sum of the entries of column vector y. Two cases can occur :
either s is not 0 ; then it suffices to divide all coordinates of y by s : we obtain a vector that is still an eigenvector, with a coordinate sum equal to 1.
or s=0 and there is no solution to your problem.
Here is a Matlab program that does the work for a 3 x 3 matrix :
M=[.2 .3 .5
.1 .8 .1
.4 .4 .2]
[P,D]=eig(M')
Y=P(:,3)
M'*Y - Y,% should be 0
Z=Y/sum(Y),%the sum of Z's coordinates is 1
M'*Z-Z,% should be 0
edited Nov 15 '18 at 17:15
answered Nov 15 '18 at 17:02
Jean Marie BeckerJean Marie Becker
1585
1585
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53313052%2fhow-to-solve-markov-transition-rate-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown