Problems while trying to create a new id column based on three criteria?
up vote
3
down vote
favorite
I have a dataframe with conversations and timestamps like this:
timestamp userID textBlob new_id
2018-10-05 23:07:02 01 a large text blob...
2018-10-05 23:07:13 01 a large text blob...
2018-10-05 23:07:23 01 a large text blob...
2018-10-05 23:07:36 01 a large text blob...
2018-10-05 23:08:02 01 a large text blob...
2018-10-05 23:09:16 01 a large text blob...
2018-10-05 23:09:21 01 a large text blob...
2018-10-05 23:09:39 01 a large text blob...
2018-10-05 23:09:47 01 a large text blob...
2018-10-05 23:10:01 01 a large text blob...
2018-10-05 23:10:11 01 a large text blob...
2018-10-05 23:10:23 01 restart
2018-10-05 23:10:59 01 a large text blob...
2018-10-05 23:11:03 01 a large text blob...
2018-10-08 23:11:32 02 a large text blob...
2018-10-08 23:12:58 02 a large text blob...
2018-10-08 23:13:16 02 a large text blob...
2018-10-08 23:14:04 02 a large text blob...
2018-10-08 03:38:36 02 a large text blob...
2018-10-08 03:38:42 02 a large text blob...
2018-10-08 03:38:52 02 a large text blob...
2018-10-08 03:38:57 02 a large text blob...
2018-10-08 03:39:10 02 a large text blob...
2018-10-08 03:39:27 02 Restart
2018-10-08 03:40:47 02 a large text blob...
2018-10-08 03:40:54 02 a large text blob...
2018-10-08 03:41:02 02 a large text blob...
2018-10-08 03:41:12 02 a large text blob...
2018-10-08 03:41:32 02 a large text blob...
2018-10-08 03:41:39 02 a large text blob...
2018-10-08 03:42:20 02 a large text blob...
2018-10-08 03:44:58 02 a large text blob...
2018-10-08 03:45:54 02 a large text blob...
2018-10-08 03:46:06 02 a large text blob...
2018-10-08 05:06:42 03 a large text blob...
2018-10-08 05:06:53 03 a large text blob...
2018-10-08 05:08:49 03 a large text blob...
2018-10-08 05:08:58 03 a large text blob...
2018-10-08 05:58:18 04 a large text blob...
2018-10-08 05:58:26 04 a large text blob...
2018-10-08 05:58:37 04 a large text blob...
2018-10-08 05:58:58 04 a large text blob...
2018-10-08 06:00:31 04 a large text blob...
2018-10-08 06:01:00 04 a large text blob...
2018-10-08 06:01:14 04 a large text blob...
2018-10-08 06:02:03 04 a large text blob...
2018-10-08 06:02:03 04 a large text blob...
2018-10-08 06:06:03 04 a large text blob...
2018-10-08 06:10:00 04 a large text blob...
2018-10-08 09:07:03 04 a large text blob...
2018-10-08 09:09:03 04 a large text blob...
2018-10-09 10:01:00 04 a large text blob...
2018-10-09 10:02:00 04 a large text blob...
2018-10-09 10:03:00 04 a large text blob...
2018-10-09 10:09:00 04 a large text blob...
2018-10-09 10:09:00 05 a large text blob...
At the moment I would like to identify with an id the conversations inside the dataframe. The problem is that a user can have several conversations (i.e. an userID
can have multiple textBlob
associated). Thus, I would like to add a new_id
in order to be able to identify the conversations inside the above dataframe.
For this, I would like to create a new_id
column based on three criteria:
- 10 minutes periods
- the occurrence of a keyword
- when a user doesnt have more textblobs
The expected output looks like this (*)
:
timestamp userID textBlob new_id
2018-10-05 23:07:02 01 a large text blob... 001
2018-10-05 23:07:13 01 a large text blob... 001
2018-10-05 23:07:23 01 a large text blob... 001
2018-10-05 23:07:36 01 a large text blob... 001
2018-10-05 23:08:02 01 a large text blob... 001
2018-10-05 23:09:16 01 a large text blob... 001
2018-10-05 23:09:21 01 a large text blob... 001
2018-10-05 23:09:39 01 a large text blob... 001
2018-10-05 23:09:47 01 a large text blob... 001
2018-10-05 23:10:01 01 a large text blob... 001
2018-10-05 23:10:11 01 a large text blob... 001
2018-10-05 23:10:23 01 restart 001 ---- (The word restart appeared so a new id is created ↓)
2018-10-05 23:10:59 01 a large text blob... 002
2018-10-05 23:11:03 01 a large text blob... 002
2018-10-08 23:11:32 02 a large text blob... 002
2018-10-08 23:12:58 02 a large text blob... 002
2018-10-08 23:13:16 02 a large text blob... 002
2018-10-08 23:14:04 02 a large text blob... 002 --- (The conversation ends because the 10 minutes time threshold was exceeded)
2018-10-08 03:38:36 02 a large text blob... 003
2018-10-08 03:38:42 02 a large text blob... 003
2018-10-08 03:38:52 02 a large text blob... 003
2018-10-08 03:38:57 02 a large text blob... 003
2018-10-08 03:39:10 02 a large text blob... 003
2018-10-08 03:39:27 02 Restart 003 ---- (The word restart appeared so a new id is created ↓)
2018-10-08 03:40:47 02 a large text blob... 004
2018-10-08 03:40:54 02 a large text blob... 004
2018-10-08 03:41:02 02 a large text blob... 004
2018-10-08 03:41:12 02 a large text blob... 004
2018-10-08 03:41:32 02 a large text blob... 004
2018-10-08 03:41:39 02 a large text blob... 004
2018-10-08 03:42:20 02 a large text blob... 004
2018-10-08 03:44:58 02 a large text blob... 004
2018-10-08 03:45:54 02 a large text blob... 004
2018-10-08 03:46:06 02 a large text blob... 004 ---- (The 10 minutes threshold is exceeded a new id is assigned ↓)
2018-10-08 05:06:42 03 a large text blob... 005
2018-10-08 05:06:53 03 a large text blob... 005
2018-10-08 05:08:49 03 a large text blob... 005
2018-10-08 05:08:58 03 a large text blob... 005 ---- (no more conversations from user id 03, thus the a new id is assigned)
2018-10-08 05:58:18 04 a large text blob... 006
2018-10-08 05:58:26 04 a large text blob... 006
2018-10-08 05:58:37 04 a large text blob... 006
2018-10-08 05:58:58 04 a large text blob... 006
2018-10-08 06:00:31 04 a large text blob... 006
2018-10-08 06:01:00 04 a large text blob... 006
2018-10-08 06:01:14 04 a large text blob... 006
2018-10-08 06:02:03 04 a large text blob... 006 ---- (The 10 minutes threshold is exceeded a new id is assigned ↓)
2018-10-08 06:02:03 04 a large text blob... 007
2018-10-08 06:06:03 04 a large text blob... 007
2018-10-08 06:10:00 04 a large text blob... 007
2018-10-08 09:07:03 04 a large text blob... 007
2018-10-08 09:09:03 04 a large text blob... 007 ---- (The 10 minutes threshold is exceeded a new id is assigned ↓)
2018-10-09 10:01:00 04 a large text blob... 008
2018-10-09 10:02:00 04 a large text blob... 008
2018-10-09 10:03:00 04 a large text blob... 008
2018-10-09 10:09:00 04 a large text blob... 008 ---- (no more conversations from user id 04, thus the a new id is assigned)
2018-10-09 10:09:00 05 a large text blob... 010
So far I tried to:
searchfor = ['restart','Restart']
df['keyword_id'] = df['textBlob'].str.contains('|'.join(searchfor))
And
dif = df['timestamp'] - df['timestamp'].shift()
periods = dif > pd.Timedelta('10 min')
times = periods.cumsum().apply(lambda x: x+1)
df['time_id'] = times
However, I also need to consider the userID and I end up with several columns. Is there any way of fulfilling the three conditions and getting the expected output (*)
?
python pandas dataframe
add a comment |
up vote
3
down vote
favorite
I have a dataframe with conversations and timestamps like this:
timestamp userID textBlob new_id
2018-10-05 23:07:02 01 a large text blob...
2018-10-05 23:07:13 01 a large text blob...
2018-10-05 23:07:23 01 a large text blob...
2018-10-05 23:07:36 01 a large text blob...
2018-10-05 23:08:02 01 a large text blob...
2018-10-05 23:09:16 01 a large text blob...
2018-10-05 23:09:21 01 a large text blob...
2018-10-05 23:09:39 01 a large text blob...
2018-10-05 23:09:47 01 a large text blob...
2018-10-05 23:10:01 01 a large text blob...
2018-10-05 23:10:11 01 a large text blob...
2018-10-05 23:10:23 01 restart
2018-10-05 23:10:59 01 a large text blob...
2018-10-05 23:11:03 01 a large text blob...
2018-10-08 23:11:32 02 a large text blob...
2018-10-08 23:12:58 02 a large text blob...
2018-10-08 23:13:16 02 a large text blob...
2018-10-08 23:14:04 02 a large text blob...
2018-10-08 03:38:36 02 a large text blob...
2018-10-08 03:38:42 02 a large text blob...
2018-10-08 03:38:52 02 a large text blob...
2018-10-08 03:38:57 02 a large text blob...
2018-10-08 03:39:10 02 a large text blob...
2018-10-08 03:39:27 02 Restart
2018-10-08 03:40:47 02 a large text blob...
2018-10-08 03:40:54 02 a large text blob...
2018-10-08 03:41:02 02 a large text blob...
2018-10-08 03:41:12 02 a large text blob...
2018-10-08 03:41:32 02 a large text blob...
2018-10-08 03:41:39 02 a large text blob...
2018-10-08 03:42:20 02 a large text blob...
2018-10-08 03:44:58 02 a large text blob...
2018-10-08 03:45:54 02 a large text blob...
2018-10-08 03:46:06 02 a large text blob...
2018-10-08 05:06:42 03 a large text blob...
2018-10-08 05:06:53 03 a large text blob...
2018-10-08 05:08:49 03 a large text blob...
2018-10-08 05:08:58 03 a large text blob...
2018-10-08 05:58:18 04 a large text blob...
2018-10-08 05:58:26 04 a large text blob...
2018-10-08 05:58:37 04 a large text blob...
2018-10-08 05:58:58 04 a large text blob...
2018-10-08 06:00:31 04 a large text blob...
2018-10-08 06:01:00 04 a large text blob...
2018-10-08 06:01:14 04 a large text blob...
2018-10-08 06:02:03 04 a large text blob...
2018-10-08 06:02:03 04 a large text blob...
2018-10-08 06:06:03 04 a large text blob...
2018-10-08 06:10:00 04 a large text blob...
2018-10-08 09:07:03 04 a large text blob...
2018-10-08 09:09:03 04 a large text blob...
2018-10-09 10:01:00 04 a large text blob...
2018-10-09 10:02:00 04 a large text blob...
2018-10-09 10:03:00 04 a large text blob...
2018-10-09 10:09:00 04 a large text blob...
2018-10-09 10:09:00 05 a large text blob...
At the moment I would like to identify with an id the conversations inside the dataframe. The problem is that a user can have several conversations (i.e. an userID
can have multiple textBlob
associated). Thus, I would like to add a new_id
in order to be able to identify the conversations inside the above dataframe.
For this, I would like to create a new_id
column based on three criteria:
- 10 minutes periods
- the occurrence of a keyword
- when a user doesnt have more textblobs
The expected output looks like this (*)
:
timestamp userID textBlob new_id
2018-10-05 23:07:02 01 a large text blob... 001
2018-10-05 23:07:13 01 a large text blob... 001
2018-10-05 23:07:23 01 a large text blob... 001
2018-10-05 23:07:36 01 a large text blob... 001
2018-10-05 23:08:02 01 a large text blob... 001
2018-10-05 23:09:16 01 a large text blob... 001
2018-10-05 23:09:21 01 a large text blob... 001
2018-10-05 23:09:39 01 a large text blob... 001
2018-10-05 23:09:47 01 a large text blob... 001
2018-10-05 23:10:01 01 a large text blob... 001
2018-10-05 23:10:11 01 a large text blob... 001
2018-10-05 23:10:23 01 restart 001 ---- (The word restart appeared so a new id is created ↓)
2018-10-05 23:10:59 01 a large text blob... 002
2018-10-05 23:11:03 01 a large text blob... 002
2018-10-08 23:11:32 02 a large text blob... 002
2018-10-08 23:12:58 02 a large text blob... 002
2018-10-08 23:13:16 02 a large text blob... 002
2018-10-08 23:14:04 02 a large text blob... 002 --- (The conversation ends because the 10 minutes time threshold was exceeded)
2018-10-08 03:38:36 02 a large text blob... 003
2018-10-08 03:38:42 02 a large text blob... 003
2018-10-08 03:38:52 02 a large text blob... 003
2018-10-08 03:38:57 02 a large text blob... 003
2018-10-08 03:39:10 02 a large text blob... 003
2018-10-08 03:39:27 02 Restart 003 ---- (The word restart appeared so a new id is created ↓)
2018-10-08 03:40:47 02 a large text blob... 004
2018-10-08 03:40:54 02 a large text blob... 004
2018-10-08 03:41:02 02 a large text blob... 004
2018-10-08 03:41:12 02 a large text blob... 004
2018-10-08 03:41:32 02 a large text blob... 004
2018-10-08 03:41:39 02 a large text blob... 004
2018-10-08 03:42:20 02 a large text blob... 004
2018-10-08 03:44:58 02 a large text blob... 004
2018-10-08 03:45:54 02 a large text blob... 004
2018-10-08 03:46:06 02 a large text blob... 004 ---- (The 10 minutes threshold is exceeded a new id is assigned ↓)
2018-10-08 05:06:42 03 a large text blob... 005
2018-10-08 05:06:53 03 a large text blob... 005
2018-10-08 05:08:49 03 a large text blob... 005
2018-10-08 05:08:58 03 a large text blob... 005 ---- (no more conversations from user id 03, thus the a new id is assigned)
2018-10-08 05:58:18 04 a large text blob... 006
2018-10-08 05:58:26 04 a large text blob... 006
2018-10-08 05:58:37 04 a large text blob... 006
2018-10-08 05:58:58 04 a large text blob... 006
2018-10-08 06:00:31 04 a large text blob... 006
2018-10-08 06:01:00 04 a large text blob... 006
2018-10-08 06:01:14 04 a large text blob... 006
2018-10-08 06:02:03 04 a large text blob... 006 ---- (The 10 minutes threshold is exceeded a new id is assigned ↓)
2018-10-08 06:02:03 04 a large text blob... 007
2018-10-08 06:06:03 04 a large text blob... 007
2018-10-08 06:10:00 04 a large text blob... 007
2018-10-08 09:07:03 04 a large text blob... 007
2018-10-08 09:09:03 04 a large text blob... 007 ---- (The 10 minutes threshold is exceeded a new id is assigned ↓)
2018-10-09 10:01:00 04 a large text blob... 008
2018-10-09 10:02:00 04 a large text blob... 008
2018-10-09 10:03:00 04 a large text blob... 008
2018-10-09 10:09:00 04 a large text blob... 008 ---- (no more conversations from user id 04, thus the a new id is assigned)
2018-10-09 10:09:00 05 a large text blob... 010
So far I tried to:
searchfor = ['restart','Restart']
df['keyword_id'] = df['textBlob'].str.contains('|'.join(searchfor))
And
dif = df['timestamp'] - df['timestamp'].shift()
periods = dif > pd.Timedelta('10 min')
times = periods.cumsum().apply(lambda x: x+1)
df['time_id'] = times
However, I also need to consider the userID and I end up with several columns. Is there any way of fulfilling the three conditions and getting the expected output (*)
?
python pandas dataframe
1
Should there be a new id assigned between the lines2018-10-05 23:11:03
and2018-10-08 03:11:32
, sinceuserID
changes from01
to02
? Also, why does the new ID jump from005
to007
?
– Peter Leimbigler
Nov 11 at 16:42
1
Thanks for the help @PeterLeimbigler, no I made a mistake while generating the data.. I fixed it check again
– tumbleweed
Nov 11 at 16:48
thanks. There is now a jump from008
to010
, and the lines I mentioned above still don't have a userID increment.
– Peter Leimbigler
Nov 11 at 17:23
add a comment |
up vote
3
down vote
favorite
up vote
3
down vote
favorite
I have a dataframe with conversations and timestamps like this:
timestamp userID textBlob new_id
2018-10-05 23:07:02 01 a large text blob...
2018-10-05 23:07:13 01 a large text blob...
2018-10-05 23:07:23 01 a large text blob...
2018-10-05 23:07:36 01 a large text blob...
2018-10-05 23:08:02 01 a large text blob...
2018-10-05 23:09:16 01 a large text blob...
2018-10-05 23:09:21 01 a large text blob...
2018-10-05 23:09:39 01 a large text blob...
2018-10-05 23:09:47 01 a large text blob...
2018-10-05 23:10:01 01 a large text blob...
2018-10-05 23:10:11 01 a large text blob...
2018-10-05 23:10:23 01 restart
2018-10-05 23:10:59 01 a large text blob...
2018-10-05 23:11:03 01 a large text blob...
2018-10-08 23:11:32 02 a large text blob...
2018-10-08 23:12:58 02 a large text blob...
2018-10-08 23:13:16 02 a large text blob...
2018-10-08 23:14:04 02 a large text blob...
2018-10-08 03:38:36 02 a large text blob...
2018-10-08 03:38:42 02 a large text blob...
2018-10-08 03:38:52 02 a large text blob...
2018-10-08 03:38:57 02 a large text blob...
2018-10-08 03:39:10 02 a large text blob...
2018-10-08 03:39:27 02 Restart
2018-10-08 03:40:47 02 a large text blob...
2018-10-08 03:40:54 02 a large text blob...
2018-10-08 03:41:02 02 a large text blob...
2018-10-08 03:41:12 02 a large text blob...
2018-10-08 03:41:32 02 a large text blob...
2018-10-08 03:41:39 02 a large text blob...
2018-10-08 03:42:20 02 a large text blob...
2018-10-08 03:44:58 02 a large text blob...
2018-10-08 03:45:54 02 a large text blob...
2018-10-08 03:46:06 02 a large text blob...
2018-10-08 05:06:42 03 a large text blob...
2018-10-08 05:06:53 03 a large text blob...
2018-10-08 05:08:49 03 a large text blob...
2018-10-08 05:08:58 03 a large text blob...
2018-10-08 05:58:18 04 a large text blob...
2018-10-08 05:58:26 04 a large text blob...
2018-10-08 05:58:37 04 a large text blob...
2018-10-08 05:58:58 04 a large text blob...
2018-10-08 06:00:31 04 a large text blob...
2018-10-08 06:01:00 04 a large text blob...
2018-10-08 06:01:14 04 a large text blob...
2018-10-08 06:02:03 04 a large text blob...
2018-10-08 06:02:03 04 a large text blob...
2018-10-08 06:06:03 04 a large text blob...
2018-10-08 06:10:00 04 a large text blob...
2018-10-08 09:07:03 04 a large text blob...
2018-10-08 09:09:03 04 a large text blob...
2018-10-09 10:01:00 04 a large text blob...
2018-10-09 10:02:00 04 a large text blob...
2018-10-09 10:03:00 04 a large text blob...
2018-10-09 10:09:00 04 a large text blob...
2018-10-09 10:09:00 05 a large text blob...
At the moment I would like to identify with an id the conversations inside the dataframe. The problem is that a user can have several conversations (i.e. an userID
can have multiple textBlob
associated). Thus, I would like to add a new_id
in order to be able to identify the conversations inside the above dataframe.
For this, I would like to create a new_id
column based on three criteria:
- 10 minutes periods
- the occurrence of a keyword
- when a user doesnt have more textblobs
The expected output looks like this (*)
:
timestamp userID textBlob new_id
2018-10-05 23:07:02 01 a large text blob... 001
2018-10-05 23:07:13 01 a large text blob... 001
2018-10-05 23:07:23 01 a large text blob... 001
2018-10-05 23:07:36 01 a large text blob... 001
2018-10-05 23:08:02 01 a large text blob... 001
2018-10-05 23:09:16 01 a large text blob... 001
2018-10-05 23:09:21 01 a large text blob... 001
2018-10-05 23:09:39 01 a large text blob... 001
2018-10-05 23:09:47 01 a large text blob... 001
2018-10-05 23:10:01 01 a large text blob... 001
2018-10-05 23:10:11 01 a large text blob... 001
2018-10-05 23:10:23 01 restart 001 ---- (The word restart appeared so a new id is created ↓)
2018-10-05 23:10:59 01 a large text blob... 002
2018-10-05 23:11:03 01 a large text blob... 002
2018-10-08 23:11:32 02 a large text blob... 002
2018-10-08 23:12:58 02 a large text blob... 002
2018-10-08 23:13:16 02 a large text blob... 002
2018-10-08 23:14:04 02 a large text blob... 002 --- (The conversation ends because the 10 minutes time threshold was exceeded)
2018-10-08 03:38:36 02 a large text blob... 003
2018-10-08 03:38:42 02 a large text blob... 003
2018-10-08 03:38:52 02 a large text blob... 003
2018-10-08 03:38:57 02 a large text blob... 003
2018-10-08 03:39:10 02 a large text blob... 003
2018-10-08 03:39:27 02 Restart 003 ---- (The word restart appeared so a new id is created ↓)
2018-10-08 03:40:47 02 a large text blob... 004
2018-10-08 03:40:54 02 a large text blob... 004
2018-10-08 03:41:02 02 a large text blob... 004
2018-10-08 03:41:12 02 a large text blob... 004
2018-10-08 03:41:32 02 a large text blob... 004
2018-10-08 03:41:39 02 a large text blob... 004
2018-10-08 03:42:20 02 a large text blob... 004
2018-10-08 03:44:58 02 a large text blob... 004
2018-10-08 03:45:54 02 a large text blob... 004
2018-10-08 03:46:06 02 a large text blob... 004 ---- (The 10 minutes threshold is exceeded a new id is assigned ↓)
2018-10-08 05:06:42 03 a large text blob... 005
2018-10-08 05:06:53 03 a large text blob... 005
2018-10-08 05:08:49 03 a large text blob... 005
2018-10-08 05:08:58 03 a large text blob... 005 ---- (no more conversations from user id 03, thus the a new id is assigned)
2018-10-08 05:58:18 04 a large text blob... 006
2018-10-08 05:58:26 04 a large text blob... 006
2018-10-08 05:58:37 04 a large text blob... 006
2018-10-08 05:58:58 04 a large text blob... 006
2018-10-08 06:00:31 04 a large text blob... 006
2018-10-08 06:01:00 04 a large text blob... 006
2018-10-08 06:01:14 04 a large text blob... 006
2018-10-08 06:02:03 04 a large text blob... 006 ---- (The 10 minutes threshold is exceeded a new id is assigned ↓)
2018-10-08 06:02:03 04 a large text blob... 007
2018-10-08 06:06:03 04 a large text blob... 007
2018-10-08 06:10:00 04 a large text blob... 007
2018-10-08 09:07:03 04 a large text blob... 007
2018-10-08 09:09:03 04 a large text blob... 007 ---- (The 10 minutes threshold is exceeded a new id is assigned ↓)
2018-10-09 10:01:00 04 a large text blob... 008
2018-10-09 10:02:00 04 a large text blob... 008
2018-10-09 10:03:00 04 a large text blob... 008
2018-10-09 10:09:00 04 a large text blob... 008 ---- (no more conversations from user id 04, thus the a new id is assigned)
2018-10-09 10:09:00 05 a large text blob... 010
So far I tried to:
searchfor = ['restart','Restart']
df['keyword_id'] = df['textBlob'].str.contains('|'.join(searchfor))
And
dif = df['timestamp'] - df['timestamp'].shift()
periods = dif > pd.Timedelta('10 min')
times = periods.cumsum().apply(lambda x: x+1)
df['time_id'] = times
However, I also need to consider the userID and I end up with several columns. Is there any way of fulfilling the three conditions and getting the expected output (*)
?
python pandas dataframe
I have a dataframe with conversations and timestamps like this:
timestamp userID textBlob new_id
2018-10-05 23:07:02 01 a large text blob...
2018-10-05 23:07:13 01 a large text blob...
2018-10-05 23:07:23 01 a large text blob...
2018-10-05 23:07:36 01 a large text blob...
2018-10-05 23:08:02 01 a large text blob...
2018-10-05 23:09:16 01 a large text blob...
2018-10-05 23:09:21 01 a large text blob...
2018-10-05 23:09:39 01 a large text blob...
2018-10-05 23:09:47 01 a large text blob...
2018-10-05 23:10:01 01 a large text blob...
2018-10-05 23:10:11 01 a large text blob...
2018-10-05 23:10:23 01 restart
2018-10-05 23:10:59 01 a large text blob...
2018-10-05 23:11:03 01 a large text blob...
2018-10-08 23:11:32 02 a large text blob...
2018-10-08 23:12:58 02 a large text blob...
2018-10-08 23:13:16 02 a large text blob...
2018-10-08 23:14:04 02 a large text blob...
2018-10-08 03:38:36 02 a large text blob...
2018-10-08 03:38:42 02 a large text blob...
2018-10-08 03:38:52 02 a large text blob...
2018-10-08 03:38:57 02 a large text blob...
2018-10-08 03:39:10 02 a large text blob...
2018-10-08 03:39:27 02 Restart
2018-10-08 03:40:47 02 a large text blob...
2018-10-08 03:40:54 02 a large text blob...
2018-10-08 03:41:02 02 a large text blob...
2018-10-08 03:41:12 02 a large text blob...
2018-10-08 03:41:32 02 a large text blob...
2018-10-08 03:41:39 02 a large text blob...
2018-10-08 03:42:20 02 a large text blob...
2018-10-08 03:44:58 02 a large text blob...
2018-10-08 03:45:54 02 a large text blob...
2018-10-08 03:46:06 02 a large text blob...
2018-10-08 05:06:42 03 a large text blob...
2018-10-08 05:06:53 03 a large text blob...
2018-10-08 05:08:49 03 a large text blob...
2018-10-08 05:08:58 03 a large text blob...
2018-10-08 05:58:18 04 a large text blob...
2018-10-08 05:58:26 04 a large text blob...
2018-10-08 05:58:37 04 a large text blob...
2018-10-08 05:58:58 04 a large text blob...
2018-10-08 06:00:31 04 a large text blob...
2018-10-08 06:01:00 04 a large text blob...
2018-10-08 06:01:14 04 a large text blob...
2018-10-08 06:02:03 04 a large text blob...
2018-10-08 06:02:03 04 a large text blob...
2018-10-08 06:06:03 04 a large text blob...
2018-10-08 06:10:00 04 a large text blob...
2018-10-08 09:07:03 04 a large text blob...
2018-10-08 09:09:03 04 a large text blob...
2018-10-09 10:01:00 04 a large text blob...
2018-10-09 10:02:00 04 a large text blob...
2018-10-09 10:03:00 04 a large text blob...
2018-10-09 10:09:00 04 a large text blob...
2018-10-09 10:09:00 05 a large text blob...
At the moment I would like to identify with an id the conversations inside the dataframe. The problem is that a user can have several conversations (i.e. an userID
can have multiple textBlob
associated). Thus, I would like to add a new_id
in order to be able to identify the conversations inside the above dataframe.
For this, I would like to create a new_id
column based on three criteria:
- 10 minutes periods
- the occurrence of a keyword
- when a user doesnt have more textblobs
The expected output looks like this (*)
:
timestamp userID textBlob new_id
2018-10-05 23:07:02 01 a large text blob... 001
2018-10-05 23:07:13 01 a large text blob... 001
2018-10-05 23:07:23 01 a large text blob... 001
2018-10-05 23:07:36 01 a large text blob... 001
2018-10-05 23:08:02 01 a large text blob... 001
2018-10-05 23:09:16 01 a large text blob... 001
2018-10-05 23:09:21 01 a large text blob... 001
2018-10-05 23:09:39 01 a large text blob... 001
2018-10-05 23:09:47 01 a large text blob... 001
2018-10-05 23:10:01 01 a large text blob... 001
2018-10-05 23:10:11 01 a large text blob... 001
2018-10-05 23:10:23 01 restart 001 ---- (The word restart appeared so a new id is created ↓)
2018-10-05 23:10:59 01 a large text blob... 002
2018-10-05 23:11:03 01 a large text blob... 002
2018-10-08 23:11:32 02 a large text blob... 002
2018-10-08 23:12:58 02 a large text blob... 002
2018-10-08 23:13:16 02 a large text blob... 002
2018-10-08 23:14:04 02 a large text blob... 002 --- (The conversation ends because the 10 minutes time threshold was exceeded)
2018-10-08 03:38:36 02 a large text blob... 003
2018-10-08 03:38:42 02 a large text blob... 003
2018-10-08 03:38:52 02 a large text blob... 003
2018-10-08 03:38:57 02 a large text blob... 003
2018-10-08 03:39:10 02 a large text blob... 003
2018-10-08 03:39:27 02 Restart 003 ---- (The word restart appeared so a new id is created ↓)
2018-10-08 03:40:47 02 a large text blob... 004
2018-10-08 03:40:54 02 a large text blob... 004
2018-10-08 03:41:02 02 a large text blob... 004
2018-10-08 03:41:12 02 a large text blob... 004
2018-10-08 03:41:32 02 a large text blob... 004
2018-10-08 03:41:39 02 a large text blob... 004
2018-10-08 03:42:20 02 a large text blob... 004
2018-10-08 03:44:58 02 a large text blob... 004
2018-10-08 03:45:54 02 a large text blob... 004
2018-10-08 03:46:06 02 a large text blob... 004 ---- (The 10 minutes threshold is exceeded a new id is assigned ↓)
2018-10-08 05:06:42 03 a large text blob... 005
2018-10-08 05:06:53 03 a large text blob... 005
2018-10-08 05:08:49 03 a large text blob... 005
2018-10-08 05:08:58 03 a large text blob... 005 ---- (no more conversations from user id 03, thus the a new id is assigned)
2018-10-08 05:58:18 04 a large text blob... 006
2018-10-08 05:58:26 04 a large text blob... 006
2018-10-08 05:58:37 04 a large text blob... 006
2018-10-08 05:58:58 04 a large text blob... 006
2018-10-08 06:00:31 04 a large text blob... 006
2018-10-08 06:01:00 04 a large text blob... 006
2018-10-08 06:01:14 04 a large text blob... 006
2018-10-08 06:02:03 04 a large text blob... 006 ---- (The 10 minutes threshold is exceeded a new id is assigned ↓)
2018-10-08 06:02:03 04 a large text blob... 007
2018-10-08 06:06:03 04 a large text blob... 007
2018-10-08 06:10:00 04 a large text blob... 007
2018-10-08 09:07:03 04 a large text blob... 007
2018-10-08 09:09:03 04 a large text blob... 007 ---- (The 10 minutes threshold is exceeded a new id is assigned ↓)
2018-10-09 10:01:00 04 a large text blob... 008
2018-10-09 10:02:00 04 a large text blob... 008
2018-10-09 10:03:00 04 a large text blob... 008
2018-10-09 10:09:00 04 a large text blob... 008 ---- (no more conversations from user id 04, thus the a new id is assigned)
2018-10-09 10:09:00 05 a large text blob... 010
So far I tried to:
searchfor = ['restart','Restart']
df['keyword_id'] = df['textBlob'].str.contains('|'.join(searchfor))
And
dif = df['timestamp'] - df['timestamp'].shift()
periods = dif > pd.Timedelta('10 min')
times = periods.cumsum().apply(lambda x: x+1)
df['time_id'] = times
However, I also need to consider the userID and I end up with several columns. Is there any way of fulfilling the three conditions and getting the expected output (*)
?
python pandas dataframe
python pandas dataframe
edited Nov 11 at 16:51
asked Nov 11 at 11:30
tumbleweed
92182353
92182353
1
Should there be a new id assigned between the lines2018-10-05 23:11:03
and2018-10-08 03:11:32
, sinceuserID
changes from01
to02
? Also, why does the new ID jump from005
to007
?
– Peter Leimbigler
Nov 11 at 16:42
1
Thanks for the help @PeterLeimbigler, no I made a mistake while generating the data.. I fixed it check again
– tumbleweed
Nov 11 at 16:48
thanks. There is now a jump from008
to010
, and the lines I mentioned above still don't have a userID increment.
– Peter Leimbigler
Nov 11 at 17:23
add a comment |
1
Should there be a new id assigned between the lines2018-10-05 23:11:03
and2018-10-08 03:11:32
, sinceuserID
changes from01
to02
? Also, why does the new ID jump from005
to007
?
– Peter Leimbigler
Nov 11 at 16:42
1
Thanks for the help @PeterLeimbigler, no I made a mistake while generating the data.. I fixed it check again
– tumbleweed
Nov 11 at 16:48
thanks. There is now a jump from008
to010
, and the lines I mentioned above still don't have a userID increment.
– Peter Leimbigler
Nov 11 at 17:23
1
1
Should there be a new id assigned between the lines
2018-10-05 23:11:03
and 2018-10-08 03:11:32
, since userID
changes from 01
to 02
? Also, why does the new ID jump from 005
to 007
?– Peter Leimbigler
Nov 11 at 16:42
Should there be a new id assigned between the lines
2018-10-05 23:11:03
and 2018-10-08 03:11:32
, since userID
changes from 01
to 02
? Also, why does the new ID jump from 005
to 007
?– Peter Leimbigler
Nov 11 at 16:42
1
1
Thanks for the help @PeterLeimbigler, no I made a mistake while generating the data.. I fixed it check again
– tumbleweed
Nov 11 at 16:48
Thanks for the help @PeterLeimbigler, no I made a mistake while generating the data.. I fixed it check again
– tumbleweed
Nov 11 at 16:48
thanks. There is now a jump from
008
to 010
, and the lines I mentioned above still don't have a userID increment.– Peter Leimbigler
Nov 11 at 17:23
thanks. There is now a jump from
008
to 010
, and the lines I mentioned above still don't have a userID increment.– Peter Leimbigler
Nov 11 at 17:23
add a comment |
2 Answers
2
active
oldest
votes
up vote
1
down vote
accepted
You're most of the way there. To put it all together, build a boolean mask for each condition, then convert the masks to int and take their cumulative sum:
mask1 = df.timestamp.diff() > pd.Timedelta(10, 'm')
mask2 = df['userID'].diff() != 0
mask3 = df['textBlob'].shift().str.lower() == 'restart'
df['new_id'] = (mask1 | mask2 | mask3).astype(int).cumsum()
# Result:
print(df.to_string(index=False))
timestamp userID textBlob new_id
2018-10-05 23:07:02 1 a_large_text_blob... 1
2018-10-05 23:07:13 1 a_large_text_blob... 1
2018-10-05 23:07:23 1 a_large_text_blob... 1
2018-10-05 23:07:36 1 a_large_text_blob... 1
2018-10-05 23:08:02 1 a_large_text_blob... 1
2018-10-05 23:09:16 1 a_large_text_blob... 1
2018-10-05 23:09:21 1 a_large_text_blob... 1
2018-10-05 23:09:39 1 a_large_text_blob... 1
2018-10-05 23:09:47 1 a_large_text_blob... 1
2018-10-05 23:10:01 1 a_large_text_blob... 1
2018-10-05 23:10:11 1 a_large_text_blob... 1
2018-10-05 23:10:23 1 restart 1
2018-10-05 23:10:59 1 a_large_text_blob... 2
2018-10-05 23:11:03 1 a_large_text_blob... 2
2018-10-08 03:11:32 2 a_large_text_blob... 3
2018-10-08 03:12:58 2 a_large_text_blob... 3
2018-10-08 03:13:16 2 a_large_text_blob... 3
2018-10-08 03:14:04 2 a_large_text_blob... 3
2018-10-08 03:38:36 2 a_large_text_blob... 4
2018-10-08 03:38:42 2 a_large_text_blob... 4
2018-10-08 03:38:52 2 a_large_text_blob... 4
2018-10-08 03:38:57 2 a_large_text_blob... 4
2018-10-08 03:39:10 2 a_large_text_blob... 4
2018-10-08 03:39:27 2 Restart 4
2018-10-08 03:40:47 2 a_large_text_blob... 5
2018-10-08 03:40:54 2 a_large_text_blob... 5
2018-10-08 03:41:02 2 a_large_text_blob... 5
2018-10-08 03:41:12 2 a_large_text_blob... 5
2018-10-08 03:41:32 2 a_large_text_blob... 5
2018-10-08 03:41:39 2 a_large_text_blob... 5
2018-10-08 03:42:20 2 a_large_text_blob... 5
2018-10-08 03:44:58 2 a_large_text_blob... 5
2018-10-08 03:45:54 2 a_large_text_blob... 5
2018-10-08 03:46:06 2 a_large_text_blob... 5
2018-10-08 05:06:42 3 a_large_text_blob... 6
2018-10-08 05:06:53 3 a_large_text_blob... 6
2018-10-08 05:08:49 3 a_large_text_blob... 6
2018-10-08 05:08:58 3 a_large_text_blob... 6
2018-10-08 05:58:18 4 a_large_text_blob... 7
2018-10-08 05:58:26 4 a_large_text_blob... 7
2018-10-08 05:58:37 4 a_large_text_blob... 7
2018-10-08 05:58:58 4 a_large_text_blob... 7
2018-10-08 06:00:31 4 a_large_text_blob... 7
2018-10-08 06:01:00 4 a_large_text_blob... 7
2018-10-08 06:01:14 4 a_large_text_blob... 7
2018-10-08 06:02:03 4 a_large_text_blob... 7
2018-10-08 06:02:03 4 a_large_text_blob... 7
2018-10-08 06:06:03 4 a_large_text_blob... 7
2018-10-08 06:10:00 4 a_large_text_blob... 7
2018-10-08 09:07:03 4 a_large_text_blob... 8
2018-10-08 09:09:03 4 a_large_text_blob... 8
2018-10-09 10:01:00 4 a_large_text_blob... 9
2018-10-09 10:02:00 4 a_large_text_blob... 9
2018-10-09 10:03:00 4 a_large_text_blob... 9
2018-10-09 10:09:00 4 a_large_text_blob... 9
2018-10-09 10:09:00 5 a_large_text_blob... 10
I updated the data, thanks for the help
– tumbleweed
Nov 11 at 16:53
1
@tumbleweed, I've adjusted therestart
logic, so this output should be what you're looking for. Let me know if I'm still missing anything.
– Peter Leimbigler
Nov 11 at 17:24
add a comment |
up vote
0
down vote
Ok I thought the 10 minutes period should count from the beginning of the conversation, not from the immediate below message, in that case you would need to iterate over the rows like:
df['timestamp'] = pd.to_datetime(df['timestamp'])
restart = df.textBlob.str.contains('|'.join(['restart','Restart']))
user_change = df.userID == df.userID.shift().fillna(method='bfill')
df['new_id'] = (restart | ~user_change).cumsum()
current_id = 0
new_id_prev = 0
start_time = df.timestamp.iloc[0]
for i, new_id, timestamp in zip(range(len(df)), df.new_id, df.timestamp):
timedelta = timestamp - start_time
if new_id != new_id_prev or timedelta > pd.Timedelta(10,unit='m'):
current_id += 1
start_time = timestamp
new_id_prev = new_id
df.new_id.iloc[i] = current_id
1
Thanks for the help!
– tumbleweed
Nov 11 at 17:54
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
You're most of the way there. To put it all together, build a boolean mask for each condition, then convert the masks to int and take their cumulative sum:
mask1 = df.timestamp.diff() > pd.Timedelta(10, 'm')
mask2 = df['userID'].diff() != 0
mask3 = df['textBlob'].shift().str.lower() == 'restart'
df['new_id'] = (mask1 | mask2 | mask3).astype(int).cumsum()
# Result:
print(df.to_string(index=False))
timestamp userID textBlob new_id
2018-10-05 23:07:02 1 a_large_text_blob... 1
2018-10-05 23:07:13 1 a_large_text_blob... 1
2018-10-05 23:07:23 1 a_large_text_blob... 1
2018-10-05 23:07:36 1 a_large_text_blob... 1
2018-10-05 23:08:02 1 a_large_text_blob... 1
2018-10-05 23:09:16 1 a_large_text_blob... 1
2018-10-05 23:09:21 1 a_large_text_blob... 1
2018-10-05 23:09:39 1 a_large_text_blob... 1
2018-10-05 23:09:47 1 a_large_text_blob... 1
2018-10-05 23:10:01 1 a_large_text_blob... 1
2018-10-05 23:10:11 1 a_large_text_blob... 1
2018-10-05 23:10:23 1 restart 1
2018-10-05 23:10:59 1 a_large_text_blob... 2
2018-10-05 23:11:03 1 a_large_text_blob... 2
2018-10-08 03:11:32 2 a_large_text_blob... 3
2018-10-08 03:12:58 2 a_large_text_blob... 3
2018-10-08 03:13:16 2 a_large_text_blob... 3
2018-10-08 03:14:04 2 a_large_text_blob... 3
2018-10-08 03:38:36 2 a_large_text_blob... 4
2018-10-08 03:38:42 2 a_large_text_blob... 4
2018-10-08 03:38:52 2 a_large_text_blob... 4
2018-10-08 03:38:57 2 a_large_text_blob... 4
2018-10-08 03:39:10 2 a_large_text_blob... 4
2018-10-08 03:39:27 2 Restart 4
2018-10-08 03:40:47 2 a_large_text_blob... 5
2018-10-08 03:40:54 2 a_large_text_blob... 5
2018-10-08 03:41:02 2 a_large_text_blob... 5
2018-10-08 03:41:12 2 a_large_text_blob... 5
2018-10-08 03:41:32 2 a_large_text_blob... 5
2018-10-08 03:41:39 2 a_large_text_blob... 5
2018-10-08 03:42:20 2 a_large_text_blob... 5
2018-10-08 03:44:58 2 a_large_text_blob... 5
2018-10-08 03:45:54 2 a_large_text_blob... 5
2018-10-08 03:46:06 2 a_large_text_blob... 5
2018-10-08 05:06:42 3 a_large_text_blob... 6
2018-10-08 05:06:53 3 a_large_text_blob... 6
2018-10-08 05:08:49 3 a_large_text_blob... 6
2018-10-08 05:08:58 3 a_large_text_blob... 6
2018-10-08 05:58:18 4 a_large_text_blob... 7
2018-10-08 05:58:26 4 a_large_text_blob... 7
2018-10-08 05:58:37 4 a_large_text_blob... 7
2018-10-08 05:58:58 4 a_large_text_blob... 7
2018-10-08 06:00:31 4 a_large_text_blob... 7
2018-10-08 06:01:00 4 a_large_text_blob... 7
2018-10-08 06:01:14 4 a_large_text_blob... 7
2018-10-08 06:02:03 4 a_large_text_blob... 7
2018-10-08 06:02:03 4 a_large_text_blob... 7
2018-10-08 06:06:03 4 a_large_text_blob... 7
2018-10-08 06:10:00 4 a_large_text_blob... 7
2018-10-08 09:07:03 4 a_large_text_blob... 8
2018-10-08 09:09:03 4 a_large_text_blob... 8
2018-10-09 10:01:00 4 a_large_text_blob... 9
2018-10-09 10:02:00 4 a_large_text_blob... 9
2018-10-09 10:03:00 4 a_large_text_blob... 9
2018-10-09 10:09:00 4 a_large_text_blob... 9
2018-10-09 10:09:00 5 a_large_text_blob... 10
I updated the data, thanks for the help
– tumbleweed
Nov 11 at 16:53
1
@tumbleweed, I've adjusted therestart
logic, so this output should be what you're looking for. Let me know if I'm still missing anything.
– Peter Leimbigler
Nov 11 at 17:24
add a comment |
up vote
1
down vote
accepted
You're most of the way there. To put it all together, build a boolean mask for each condition, then convert the masks to int and take their cumulative sum:
mask1 = df.timestamp.diff() > pd.Timedelta(10, 'm')
mask2 = df['userID'].diff() != 0
mask3 = df['textBlob'].shift().str.lower() == 'restart'
df['new_id'] = (mask1 | mask2 | mask3).astype(int).cumsum()
# Result:
print(df.to_string(index=False))
timestamp userID textBlob new_id
2018-10-05 23:07:02 1 a_large_text_blob... 1
2018-10-05 23:07:13 1 a_large_text_blob... 1
2018-10-05 23:07:23 1 a_large_text_blob... 1
2018-10-05 23:07:36 1 a_large_text_blob... 1
2018-10-05 23:08:02 1 a_large_text_blob... 1
2018-10-05 23:09:16 1 a_large_text_blob... 1
2018-10-05 23:09:21 1 a_large_text_blob... 1
2018-10-05 23:09:39 1 a_large_text_blob... 1
2018-10-05 23:09:47 1 a_large_text_blob... 1
2018-10-05 23:10:01 1 a_large_text_blob... 1
2018-10-05 23:10:11 1 a_large_text_blob... 1
2018-10-05 23:10:23 1 restart 1
2018-10-05 23:10:59 1 a_large_text_blob... 2
2018-10-05 23:11:03 1 a_large_text_blob... 2
2018-10-08 03:11:32 2 a_large_text_blob... 3
2018-10-08 03:12:58 2 a_large_text_blob... 3
2018-10-08 03:13:16 2 a_large_text_blob... 3
2018-10-08 03:14:04 2 a_large_text_blob... 3
2018-10-08 03:38:36 2 a_large_text_blob... 4
2018-10-08 03:38:42 2 a_large_text_blob... 4
2018-10-08 03:38:52 2 a_large_text_blob... 4
2018-10-08 03:38:57 2 a_large_text_blob... 4
2018-10-08 03:39:10 2 a_large_text_blob... 4
2018-10-08 03:39:27 2 Restart 4
2018-10-08 03:40:47 2 a_large_text_blob... 5
2018-10-08 03:40:54 2 a_large_text_blob... 5
2018-10-08 03:41:02 2 a_large_text_blob... 5
2018-10-08 03:41:12 2 a_large_text_blob... 5
2018-10-08 03:41:32 2 a_large_text_blob... 5
2018-10-08 03:41:39 2 a_large_text_blob... 5
2018-10-08 03:42:20 2 a_large_text_blob... 5
2018-10-08 03:44:58 2 a_large_text_blob... 5
2018-10-08 03:45:54 2 a_large_text_blob... 5
2018-10-08 03:46:06 2 a_large_text_blob... 5
2018-10-08 05:06:42 3 a_large_text_blob... 6
2018-10-08 05:06:53 3 a_large_text_blob... 6
2018-10-08 05:08:49 3 a_large_text_blob... 6
2018-10-08 05:08:58 3 a_large_text_blob... 6
2018-10-08 05:58:18 4 a_large_text_blob... 7
2018-10-08 05:58:26 4 a_large_text_blob... 7
2018-10-08 05:58:37 4 a_large_text_blob... 7
2018-10-08 05:58:58 4 a_large_text_blob... 7
2018-10-08 06:00:31 4 a_large_text_blob... 7
2018-10-08 06:01:00 4 a_large_text_blob... 7
2018-10-08 06:01:14 4 a_large_text_blob... 7
2018-10-08 06:02:03 4 a_large_text_blob... 7
2018-10-08 06:02:03 4 a_large_text_blob... 7
2018-10-08 06:06:03 4 a_large_text_blob... 7
2018-10-08 06:10:00 4 a_large_text_blob... 7
2018-10-08 09:07:03 4 a_large_text_blob... 8
2018-10-08 09:09:03 4 a_large_text_blob... 8
2018-10-09 10:01:00 4 a_large_text_blob... 9
2018-10-09 10:02:00 4 a_large_text_blob... 9
2018-10-09 10:03:00 4 a_large_text_blob... 9
2018-10-09 10:09:00 4 a_large_text_blob... 9
2018-10-09 10:09:00 5 a_large_text_blob... 10
I updated the data, thanks for the help
– tumbleweed
Nov 11 at 16:53
1
@tumbleweed, I've adjusted therestart
logic, so this output should be what you're looking for. Let me know if I'm still missing anything.
– Peter Leimbigler
Nov 11 at 17:24
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
You're most of the way there. To put it all together, build a boolean mask for each condition, then convert the masks to int and take their cumulative sum:
mask1 = df.timestamp.diff() > pd.Timedelta(10, 'm')
mask2 = df['userID'].diff() != 0
mask3 = df['textBlob'].shift().str.lower() == 'restart'
df['new_id'] = (mask1 | mask2 | mask3).astype(int).cumsum()
# Result:
print(df.to_string(index=False))
timestamp userID textBlob new_id
2018-10-05 23:07:02 1 a_large_text_blob... 1
2018-10-05 23:07:13 1 a_large_text_blob... 1
2018-10-05 23:07:23 1 a_large_text_blob... 1
2018-10-05 23:07:36 1 a_large_text_blob... 1
2018-10-05 23:08:02 1 a_large_text_blob... 1
2018-10-05 23:09:16 1 a_large_text_blob... 1
2018-10-05 23:09:21 1 a_large_text_blob... 1
2018-10-05 23:09:39 1 a_large_text_blob... 1
2018-10-05 23:09:47 1 a_large_text_blob... 1
2018-10-05 23:10:01 1 a_large_text_blob... 1
2018-10-05 23:10:11 1 a_large_text_blob... 1
2018-10-05 23:10:23 1 restart 1
2018-10-05 23:10:59 1 a_large_text_blob... 2
2018-10-05 23:11:03 1 a_large_text_blob... 2
2018-10-08 03:11:32 2 a_large_text_blob... 3
2018-10-08 03:12:58 2 a_large_text_blob... 3
2018-10-08 03:13:16 2 a_large_text_blob... 3
2018-10-08 03:14:04 2 a_large_text_blob... 3
2018-10-08 03:38:36 2 a_large_text_blob... 4
2018-10-08 03:38:42 2 a_large_text_blob... 4
2018-10-08 03:38:52 2 a_large_text_blob... 4
2018-10-08 03:38:57 2 a_large_text_blob... 4
2018-10-08 03:39:10 2 a_large_text_blob... 4
2018-10-08 03:39:27 2 Restart 4
2018-10-08 03:40:47 2 a_large_text_blob... 5
2018-10-08 03:40:54 2 a_large_text_blob... 5
2018-10-08 03:41:02 2 a_large_text_blob... 5
2018-10-08 03:41:12 2 a_large_text_blob... 5
2018-10-08 03:41:32 2 a_large_text_blob... 5
2018-10-08 03:41:39 2 a_large_text_blob... 5
2018-10-08 03:42:20 2 a_large_text_blob... 5
2018-10-08 03:44:58 2 a_large_text_blob... 5
2018-10-08 03:45:54 2 a_large_text_blob... 5
2018-10-08 03:46:06 2 a_large_text_blob... 5
2018-10-08 05:06:42 3 a_large_text_blob... 6
2018-10-08 05:06:53 3 a_large_text_blob... 6
2018-10-08 05:08:49 3 a_large_text_blob... 6
2018-10-08 05:08:58 3 a_large_text_blob... 6
2018-10-08 05:58:18 4 a_large_text_blob... 7
2018-10-08 05:58:26 4 a_large_text_blob... 7
2018-10-08 05:58:37 4 a_large_text_blob... 7
2018-10-08 05:58:58 4 a_large_text_blob... 7
2018-10-08 06:00:31 4 a_large_text_blob... 7
2018-10-08 06:01:00 4 a_large_text_blob... 7
2018-10-08 06:01:14 4 a_large_text_blob... 7
2018-10-08 06:02:03 4 a_large_text_blob... 7
2018-10-08 06:02:03 4 a_large_text_blob... 7
2018-10-08 06:06:03 4 a_large_text_blob... 7
2018-10-08 06:10:00 4 a_large_text_blob... 7
2018-10-08 09:07:03 4 a_large_text_blob... 8
2018-10-08 09:09:03 4 a_large_text_blob... 8
2018-10-09 10:01:00 4 a_large_text_blob... 9
2018-10-09 10:02:00 4 a_large_text_blob... 9
2018-10-09 10:03:00 4 a_large_text_blob... 9
2018-10-09 10:09:00 4 a_large_text_blob... 9
2018-10-09 10:09:00 5 a_large_text_blob... 10
You're most of the way there. To put it all together, build a boolean mask for each condition, then convert the masks to int and take their cumulative sum:
mask1 = df.timestamp.diff() > pd.Timedelta(10, 'm')
mask2 = df['userID'].diff() != 0
mask3 = df['textBlob'].shift().str.lower() == 'restart'
df['new_id'] = (mask1 | mask2 | mask3).astype(int).cumsum()
# Result:
print(df.to_string(index=False))
timestamp userID textBlob new_id
2018-10-05 23:07:02 1 a_large_text_blob... 1
2018-10-05 23:07:13 1 a_large_text_blob... 1
2018-10-05 23:07:23 1 a_large_text_blob... 1
2018-10-05 23:07:36 1 a_large_text_blob... 1
2018-10-05 23:08:02 1 a_large_text_blob... 1
2018-10-05 23:09:16 1 a_large_text_blob... 1
2018-10-05 23:09:21 1 a_large_text_blob... 1
2018-10-05 23:09:39 1 a_large_text_blob... 1
2018-10-05 23:09:47 1 a_large_text_blob... 1
2018-10-05 23:10:01 1 a_large_text_blob... 1
2018-10-05 23:10:11 1 a_large_text_blob... 1
2018-10-05 23:10:23 1 restart 1
2018-10-05 23:10:59 1 a_large_text_blob... 2
2018-10-05 23:11:03 1 a_large_text_blob... 2
2018-10-08 03:11:32 2 a_large_text_blob... 3
2018-10-08 03:12:58 2 a_large_text_blob... 3
2018-10-08 03:13:16 2 a_large_text_blob... 3
2018-10-08 03:14:04 2 a_large_text_blob... 3
2018-10-08 03:38:36 2 a_large_text_blob... 4
2018-10-08 03:38:42 2 a_large_text_blob... 4
2018-10-08 03:38:52 2 a_large_text_blob... 4
2018-10-08 03:38:57 2 a_large_text_blob... 4
2018-10-08 03:39:10 2 a_large_text_blob... 4
2018-10-08 03:39:27 2 Restart 4
2018-10-08 03:40:47 2 a_large_text_blob... 5
2018-10-08 03:40:54 2 a_large_text_blob... 5
2018-10-08 03:41:02 2 a_large_text_blob... 5
2018-10-08 03:41:12 2 a_large_text_blob... 5
2018-10-08 03:41:32 2 a_large_text_blob... 5
2018-10-08 03:41:39 2 a_large_text_blob... 5
2018-10-08 03:42:20 2 a_large_text_blob... 5
2018-10-08 03:44:58 2 a_large_text_blob... 5
2018-10-08 03:45:54 2 a_large_text_blob... 5
2018-10-08 03:46:06 2 a_large_text_blob... 5
2018-10-08 05:06:42 3 a_large_text_blob... 6
2018-10-08 05:06:53 3 a_large_text_blob... 6
2018-10-08 05:08:49 3 a_large_text_blob... 6
2018-10-08 05:08:58 3 a_large_text_blob... 6
2018-10-08 05:58:18 4 a_large_text_blob... 7
2018-10-08 05:58:26 4 a_large_text_blob... 7
2018-10-08 05:58:37 4 a_large_text_blob... 7
2018-10-08 05:58:58 4 a_large_text_blob... 7
2018-10-08 06:00:31 4 a_large_text_blob... 7
2018-10-08 06:01:00 4 a_large_text_blob... 7
2018-10-08 06:01:14 4 a_large_text_blob... 7
2018-10-08 06:02:03 4 a_large_text_blob... 7
2018-10-08 06:02:03 4 a_large_text_blob... 7
2018-10-08 06:06:03 4 a_large_text_blob... 7
2018-10-08 06:10:00 4 a_large_text_blob... 7
2018-10-08 09:07:03 4 a_large_text_blob... 8
2018-10-08 09:09:03 4 a_large_text_blob... 8
2018-10-09 10:01:00 4 a_large_text_blob... 9
2018-10-09 10:02:00 4 a_large_text_blob... 9
2018-10-09 10:03:00 4 a_large_text_blob... 9
2018-10-09 10:09:00 4 a_large_text_blob... 9
2018-10-09 10:09:00 5 a_large_text_blob... 10
edited Nov 11 at 17:24
answered Nov 11 at 16:51
Peter Leimbigler
3,6941415
3,6941415
I updated the data, thanks for the help
– tumbleweed
Nov 11 at 16:53
1
@tumbleweed, I've adjusted therestart
logic, so this output should be what you're looking for. Let me know if I'm still missing anything.
– Peter Leimbigler
Nov 11 at 17:24
add a comment |
I updated the data, thanks for the help
– tumbleweed
Nov 11 at 16:53
1
@tumbleweed, I've adjusted therestart
logic, so this output should be what you're looking for. Let me know if I'm still missing anything.
– Peter Leimbigler
Nov 11 at 17:24
I updated the data, thanks for the help
– tumbleweed
Nov 11 at 16:53
I updated the data, thanks for the help
– tumbleweed
Nov 11 at 16:53
1
1
@tumbleweed, I've adjusted the
restart
logic, so this output should be what you're looking for. Let me know if I'm still missing anything.– Peter Leimbigler
Nov 11 at 17:24
@tumbleweed, I've adjusted the
restart
logic, so this output should be what you're looking for. Let me know if I'm still missing anything.– Peter Leimbigler
Nov 11 at 17:24
add a comment |
up vote
0
down vote
Ok I thought the 10 minutes period should count from the beginning of the conversation, not from the immediate below message, in that case you would need to iterate over the rows like:
df['timestamp'] = pd.to_datetime(df['timestamp'])
restart = df.textBlob.str.contains('|'.join(['restart','Restart']))
user_change = df.userID == df.userID.shift().fillna(method='bfill')
df['new_id'] = (restart | ~user_change).cumsum()
current_id = 0
new_id_prev = 0
start_time = df.timestamp.iloc[0]
for i, new_id, timestamp in zip(range(len(df)), df.new_id, df.timestamp):
timedelta = timestamp - start_time
if new_id != new_id_prev or timedelta > pd.Timedelta(10,unit='m'):
current_id += 1
start_time = timestamp
new_id_prev = new_id
df.new_id.iloc[i] = current_id
1
Thanks for the help!
– tumbleweed
Nov 11 at 17:54
add a comment |
up vote
0
down vote
Ok I thought the 10 minutes period should count from the beginning of the conversation, not from the immediate below message, in that case you would need to iterate over the rows like:
df['timestamp'] = pd.to_datetime(df['timestamp'])
restart = df.textBlob.str.contains('|'.join(['restart','Restart']))
user_change = df.userID == df.userID.shift().fillna(method='bfill')
df['new_id'] = (restart | ~user_change).cumsum()
current_id = 0
new_id_prev = 0
start_time = df.timestamp.iloc[0]
for i, new_id, timestamp in zip(range(len(df)), df.new_id, df.timestamp):
timedelta = timestamp - start_time
if new_id != new_id_prev or timedelta > pd.Timedelta(10,unit='m'):
current_id += 1
start_time = timestamp
new_id_prev = new_id
df.new_id.iloc[i] = current_id
1
Thanks for the help!
– tumbleweed
Nov 11 at 17:54
add a comment |
up vote
0
down vote
up vote
0
down vote
Ok I thought the 10 minutes period should count from the beginning of the conversation, not from the immediate below message, in that case you would need to iterate over the rows like:
df['timestamp'] = pd.to_datetime(df['timestamp'])
restart = df.textBlob.str.contains('|'.join(['restart','Restart']))
user_change = df.userID == df.userID.shift().fillna(method='bfill')
df['new_id'] = (restart | ~user_change).cumsum()
current_id = 0
new_id_prev = 0
start_time = df.timestamp.iloc[0]
for i, new_id, timestamp in zip(range(len(df)), df.new_id, df.timestamp):
timedelta = timestamp - start_time
if new_id != new_id_prev or timedelta > pd.Timedelta(10,unit='m'):
current_id += 1
start_time = timestamp
new_id_prev = new_id
df.new_id.iloc[i] = current_id
Ok I thought the 10 minutes period should count from the beginning of the conversation, not from the immediate below message, in that case you would need to iterate over the rows like:
df['timestamp'] = pd.to_datetime(df['timestamp'])
restart = df.textBlob.str.contains('|'.join(['restart','Restart']))
user_change = df.userID == df.userID.shift().fillna(method='bfill')
df['new_id'] = (restart | ~user_change).cumsum()
current_id = 0
new_id_prev = 0
start_time = df.timestamp.iloc[0]
for i, new_id, timestamp in zip(range(len(df)), df.new_id, df.timestamp):
timedelta = timestamp - start_time
if new_id != new_id_prev or timedelta > pd.Timedelta(10,unit='m'):
current_id += 1
start_time = timestamp
new_id_prev = new_id
df.new_id.iloc[i] = current_id
answered Nov 11 at 17:04
Franco Piccolo
1,345611
1,345611
1
Thanks for the help!
– tumbleweed
Nov 11 at 17:54
add a comment |
1
Thanks for the help!
– tumbleweed
Nov 11 at 17:54
1
1
Thanks for the help!
– tumbleweed
Nov 11 at 17:54
Thanks for the help!
– tumbleweed
Nov 11 at 17:54
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53248280%2fproblems-while-trying-to-create-a-new-id-column-based-on-three-criteria%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Should there be a new id assigned between the lines
2018-10-05 23:11:03
and2018-10-08 03:11:32
, sinceuserID
changes from01
to02
? Also, why does the new ID jump from005
to007
?– Peter Leimbigler
Nov 11 at 16:42
1
Thanks for the help @PeterLeimbigler, no I made a mistake while generating the data.. I fixed it check again
– tumbleweed
Nov 11 at 16:48
thanks. There is now a jump from
008
to010
, and the lines I mentioned above still don't have a userID increment.– Peter Leimbigler
Nov 11 at 17:23