Tensorflow: train_and_evaluate always producing loss 0












0















I have a project using a canned estimator in Tensorflow and trying to produce train_and_evaluate method.



estimator = tf.estimator.DNNClassifier(
feature_columns=my_feature_columns,
hidden_units=hidden_units,
model_dir=model_dir,
optimizer=tf.train.ProximalAdagradOptimizer(learning_rate=0.01,l1_regularization_strength=0.001))


Every time that I see the console output it shows that the loss is always zero.



INFO:tensorflow:loss = 2.896826e-06, step = 875
INFO:tensorflow:global_step/sec: 5.96785
INFO:tensorflow:loss = 1.9453131e-05, step = 975 (16.756 sec)
INFO:tensorflow:global_step/sec: 7.2834
INFO:tensorflow:loss = 8.6957414e-05, step = 1075 (13.730 sec)
INFO:tensorflow:global_step/sec: 7.36042
INFO:tensorflow:loss = 0.0004585028, step = 1175 (13.586 sec)
INFO:tensorflow:global_step/sec: 7.38419
INFO:tensorflow:loss = 0.0012249642, step = 1275 (13.542 sec)
INFO:tensorflow:global_step/sec: 7.3658
INFO:tensorflow:loss = 0.002194246, step = 1375 (13.576 sec)
INFO:tensorflow:global_step/sec: 7.33054
INFO:tensorflow:loss = 0.0031063582, step = 1475 (13.641 sec)


This happened since I change my input_fn (I used to load my CSV into a pandas Dataframe and work from there, however my total Dataset is over 10GB (800x1500000 in dimensions), and every time that I used to save the model, the model folder size used to be crazy large (over 200GB), so I decided to use iterators instead (I found this input function in a tutorial somewhere and it works well):



def input_fn_train(filenames,
num_epochs=None,
shuffle=True,
skip_header_lines=0,
batch_size=200,
modeTrainEval=True):
filename_dataset = tf.data.Dataset.from_tensor_slices(filenames)
if shuffle:
filename_dataset = filename_dataset.shuffle(len(filenames))
dataset = filename_dataset.flat_map(lambda filename: tf.data.TextLineDataset(filename).skip(skip_header_lines))
dataset = dataset.map(parse_csv)
if shuffle:
dataset = dataset.shuffle(buffer_size=batch_size * 10)
dataset = dataset.repeat(num_epochs)
dataset = dataset.batch(batch_size)
iterator = dataset.make_one_shot_iterator()
features = iterator.get_next()
features, labels = features, features.pop(LABEL_COLUMN)
if not modeTrainEval:
return features, None
return features, labels


Unfortunately, this change caused my loss being always be zero, and as a consequence the predictions are terribly bad (50% accuracy), and I can't find the reason why.



(github link with sample dataset and my code)










share|improve this question



























    0















    I have a project using a canned estimator in Tensorflow and trying to produce train_and_evaluate method.



    estimator = tf.estimator.DNNClassifier(
    feature_columns=my_feature_columns,
    hidden_units=hidden_units,
    model_dir=model_dir,
    optimizer=tf.train.ProximalAdagradOptimizer(learning_rate=0.01,l1_regularization_strength=0.001))


    Every time that I see the console output it shows that the loss is always zero.



    INFO:tensorflow:loss = 2.896826e-06, step = 875
    INFO:tensorflow:global_step/sec: 5.96785
    INFO:tensorflow:loss = 1.9453131e-05, step = 975 (16.756 sec)
    INFO:tensorflow:global_step/sec: 7.2834
    INFO:tensorflow:loss = 8.6957414e-05, step = 1075 (13.730 sec)
    INFO:tensorflow:global_step/sec: 7.36042
    INFO:tensorflow:loss = 0.0004585028, step = 1175 (13.586 sec)
    INFO:tensorflow:global_step/sec: 7.38419
    INFO:tensorflow:loss = 0.0012249642, step = 1275 (13.542 sec)
    INFO:tensorflow:global_step/sec: 7.3658
    INFO:tensorflow:loss = 0.002194246, step = 1375 (13.576 sec)
    INFO:tensorflow:global_step/sec: 7.33054
    INFO:tensorflow:loss = 0.0031063582, step = 1475 (13.641 sec)


    This happened since I change my input_fn (I used to load my CSV into a pandas Dataframe and work from there, however my total Dataset is over 10GB (800x1500000 in dimensions), and every time that I used to save the model, the model folder size used to be crazy large (over 200GB), so I decided to use iterators instead (I found this input function in a tutorial somewhere and it works well):



    def input_fn_train(filenames,
    num_epochs=None,
    shuffle=True,
    skip_header_lines=0,
    batch_size=200,
    modeTrainEval=True):
    filename_dataset = tf.data.Dataset.from_tensor_slices(filenames)
    if shuffle:
    filename_dataset = filename_dataset.shuffle(len(filenames))
    dataset = filename_dataset.flat_map(lambda filename: tf.data.TextLineDataset(filename).skip(skip_header_lines))
    dataset = dataset.map(parse_csv)
    if shuffle:
    dataset = dataset.shuffle(buffer_size=batch_size * 10)
    dataset = dataset.repeat(num_epochs)
    dataset = dataset.batch(batch_size)
    iterator = dataset.make_one_shot_iterator()
    features = iterator.get_next()
    features, labels = features, features.pop(LABEL_COLUMN)
    if not modeTrainEval:
    return features, None
    return features, labels


    Unfortunately, this change caused my loss being always be zero, and as a consequence the predictions are terribly bad (50% accuracy), and I can't find the reason why.



    (github link with sample dataset and my code)










    share|improve this question

























      0












      0








      0








      I have a project using a canned estimator in Tensorflow and trying to produce train_and_evaluate method.



      estimator = tf.estimator.DNNClassifier(
      feature_columns=my_feature_columns,
      hidden_units=hidden_units,
      model_dir=model_dir,
      optimizer=tf.train.ProximalAdagradOptimizer(learning_rate=0.01,l1_regularization_strength=0.001))


      Every time that I see the console output it shows that the loss is always zero.



      INFO:tensorflow:loss = 2.896826e-06, step = 875
      INFO:tensorflow:global_step/sec: 5.96785
      INFO:tensorflow:loss = 1.9453131e-05, step = 975 (16.756 sec)
      INFO:tensorflow:global_step/sec: 7.2834
      INFO:tensorflow:loss = 8.6957414e-05, step = 1075 (13.730 sec)
      INFO:tensorflow:global_step/sec: 7.36042
      INFO:tensorflow:loss = 0.0004585028, step = 1175 (13.586 sec)
      INFO:tensorflow:global_step/sec: 7.38419
      INFO:tensorflow:loss = 0.0012249642, step = 1275 (13.542 sec)
      INFO:tensorflow:global_step/sec: 7.3658
      INFO:tensorflow:loss = 0.002194246, step = 1375 (13.576 sec)
      INFO:tensorflow:global_step/sec: 7.33054
      INFO:tensorflow:loss = 0.0031063582, step = 1475 (13.641 sec)


      This happened since I change my input_fn (I used to load my CSV into a pandas Dataframe and work from there, however my total Dataset is over 10GB (800x1500000 in dimensions), and every time that I used to save the model, the model folder size used to be crazy large (over 200GB), so I decided to use iterators instead (I found this input function in a tutorial somewhere and it works well):



      def input_fn_train(filenames,
      num_epochs=None,
      shuffle=True,
      skip_header_lines=0,
      batch_size=200,
      modeTrainEval=True):
      filename_dataset = tf.data.Dataset.from_tensor_slices(filenames)
      if shuffle:
      filename_dataset = filename_dataset.shuffle(len(filenames))
      dataset = filename_dataset.flat_map(lambda filename: tf.data.TextLineDataset(filename).skip(skip_header_lines))
      dataset = dataset.map(parse_csv)
      if shuffle:
      dataset = dataset.shuffle(buffer_size=batch_size * 10)
      dataset = dataset.repeat(num_epochs)
      dataset = dataset.batch(batch_size)
      iterator = dataset.make_one_shot_iterator()
      features = iterator.get_next()
      features, labels = features, features.pop(LABEL_COLUMN)
      if not modeTrainEval:
      return features, None
      return features, labels


      Unfortunately, this change caused my loss being always be zero, and as a consequence the predictions are terribly bad (50% accuracy), and I can't find the reason why.



      (github link with sample dataset and my code)










      share|improve this question














      I have a project using a canned estimator in Tensorflow and trying to produce train_and_evaluate method.



      estimator = tf.estimator.DNNClassifier(
      feature_columns=my_feature_columns,
      hidden_units=hidden_units,
      model_dir=model_dir,
      optimizer=tf.train.ProximalAdagradOptimizer(learning_rate=0.01,l1_regularization_strength=0.001))


      Every time that I see the console output it shows that the loss is always zero.



      INFO:tensorflow:loss = 2.896826e-06, step = 875
      INFO:tensorflow:global_step/sec: 5.96785
      INFO:tensorflow:loss = 1.9453131e-05, step = 975 (16.756 sec)
      INFO:tensorflow:global_step/sec: 7.2834
      INFO:tensorflow:loss = 8.6957414e-05, step = 1075 (13.730 sec)
      INFO:tensorflow:global_step/sec: 7.36042
      INFO:tensorflow:loss = 0.0004585028, step = 1175 (13.586 sec)
      INFO:tensorflow:global_step/sec: 7.38419
      INFO:tensorflow:loss = 0.0012249642, step = 1275 (13.542 sec)
      INFO:tensorflow:global_step/sec: 7.3658
      INFO:tensorflow:loss = 0.002194246, step = 1375 (13.576 sec)
      INFO:tensorflow:global_step/sec: 7.33054
      INFO:tensorflow:loss = 0.0031063582, step = 1475 (13.641 sec)


      This happened since I change my input_fn (I used to load my CSV into a pandas Dataframe and work from there, however my total Dataset is over 10GB (800x1500000 in dimensions), and every time that I used to save the model, the model folder size used to be crazy large (over 200GB), so I decided to use iterators instead (I found this input function in a tutorial somewhere and it works well):



      def input_fn_train(filenames,
      num_epochs=None,
      shuffle=True,
      skip_header_lines=0,
      batch_size=200,
      modeTrainEval=True):
      filename_dataset = tf.data.Dataset.from_tensor_slices(filenames)
      if shuffle:
      filename_dataset = filename_dataset.shuffle(len(filenames))
      dataset = filename_dataset.flat_map(lambda filename: tf.data.TextLineDataset(filename).skip(skip_header_lines))
      dataset = dataset.map(parse_csv)
      if shuffle:
      dataset = dataset.shuffle(buffer_size=batch_size * 10)
      dataset = dataset.repeat(num_epochs)
      dataset = dataset.batch(batch_size)
      iterator = dataset.make_one_shot_iterator()
      features = iterator.get_next()
      features, labels = features, features.pop(LABEL_COLUMN)
      if not modeTrainEval:
      return features, None
      return features, labels


      Unfortunately, this change caused my loss being always be zero, and as a consequence the predictions are terribly bad (50% accuracy), and I can't find the reason why.



      (github link with sample dataset and my code)







      python tensorflow deep-learning tensorflow-estimator






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 14 '18 at 0:41









      zeelloszeellos

      206




      206
























          0






          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53291545%2ftensorflow-train-and-evaluate-always-producing-loss-0%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53291545%2ftensorflow-train-and-evaluate-always-producing-loss-0%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Florida Star v. B. J. F.

          Danny Elfman

          Lugert, Oklahoma