Groupby, means and std












0















I'm new to python ... thank you in advance!



I need to group, calculate in a column the mean for each nutrient and the corresponding std.
As so:
cod | Nmean | Nstd | etc...for each nutrient



I managed to group and calculate the mean. But I need another column, for example, next to N%, with it's std ... and so on...



report = my_data.groupby(["cod"], as_index = False)[['N%', 'P%','K%', 'Ca%', 'Mg%', 'S%',
'Fe mg/kg', 'Mn mg/kg', 'Zn mg/kg', 'Cu mg/kg',
'B mg/kg', 'Na mg/kg']].mean()









share|improve this question



























    0















    I'm new to python ... thank you in advance!



    I need to group, calculate in a column the mean for each nutrient and the corresponding std.
    As so:
    cod | Nmean | Nstd | etc...for each nutrient



    I managed to group and calculate the mean. But I need another column, for example, next to N%, with it's std ... and so on...



    report = my_data.groupby(["cod"], as_index = False)[['N%', 'P%','K%', 'Ca%', 'Mg%', 'S%',
    'Fe mg/kg', 'Mn mg/kg', 'Zn mg/kg', 'Cu mg/kg',
    'B mg/kg', 'Na mg/kg']].mean()









    share|improve this question

























      0












      0








      0








      I'm new to python ... thank you in advance!



      I need to group, calculate in a column the mean for each nutrient and the corresponding std.
      As so:
      cod | Nmean | Nstd | etc...for each nutrient



      I managed to group and calculate the mean. But I need another column, for example, next to N%, with it's std ... and so on...



      report = my_data.groupby(["cod"], as_index = False)[['N%', 'P%','K%', 'Ca%', 'Mg%', 'S%',
      'Fe mg/kg', 'Mn mg/kg', 'Zn mg/kg', 'Cu mg/kg',
      'B mg/kg', 'Na mg/kg']].mean()









      share|improve this question














      I'm new to python ... thank you in advance!



      I need to group, calculate in a column the mean for each nutrient and the corresponding std.
      As so:
      cod | Nmean | Nstd | etc...for each nutrient



      I managed to group and calculate the mean. But I need another column, for example, next to N%, with it's std ... and so on...



      report = my_data.groupby(["cod"], as_index = False)[['N%', 'P%','K%', 'Ca%', 'Mg%', 'S%',
      'Fe mg/kg', 'Mn mg/kg', 'Zn mg/kg', 'Cu mg/kg',
      'B mg/kg', 'Na mg/kg']].mean()






      python-3.x pandas jupyter-notebook






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 13 '18 at 11:16









      Patrícia AlmeidaPatrícia Almeida

      31




      31
























          1 Answer
          1






          active

          oldest

          votes


















          0














          Write a dict comprehension with each of the column as key and ['mean', 'std'] as value first -



          groups_agg = { i:['mean', 'std'] for i in ['N%', 'P%','K%', 'Ca%', 'Mg%', 'S%', 'Fe mg/kg', 'Mn mg/kg', 'Zn mg/kg', 'Cu mg/kg', 'B mg/kg', 'Na mg/kg'] }


          It will look like this -



          {'B mg/kg': ['mean', 'std'],
          'Ca%': ['mean', 'std'],
          'Cu mg/kg': ['mean', 'std'],
          'Fe mg/kg': ['mean', 'std'],
          'K%': ['mean', 'std'],
          'Mg%': ['mean', 'std'],
          'Mn mg/kg': ['mean', 'std'],
          'N%': ['mean', 'std'],
          'Na mg/kg': ['mean', 'std'],
          'P%': ['mean', 'std'],
          'S%': ['mean', 'std'],
          'Zn mg/kg': ['mean', 'std']}


          Then pass on the object to pd.agg()



          my_data.groupby(["cod"], as_index = False).agg(groups_agg)





          share|improve this answer
























          • Worked very good. Is there any simple way to add a " ± " next to the std ?

            – Patrícia Almeida
            Nov 13 '18 at 11:29











          • I don't think so :(. But that can be achieved easily by having another column - my_data2['Mean_STD'] = my_data2['mean'] + (2*my_data2['std']). The negative can have another column

            – Vivek Kalyanarangan
            Nov 13 '18 at 11:35













          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53279822%2fgroupby-means-and-std%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0














          Write a dict comprehension with each of the column as key and ['mean', 'std'] as value first -



          groups_agg = { i:['mean', 'std'] for i in ['N%', 'P%','K%', 'Ca%', 'Mg%', 'S%', 'Fe mg/kg', 'Mn mg/kg', 'Zn mg/kg', 'Cu mg/kg', 'B mg/kg', 'Na mg/kg'] }


          It will look like this -



          {'B mg/kg': ['mean', 'std'],
          'Ca%': ['mean', 'std'],
          'Cu mg/kg': ['mean', 'std'],
          'Fe mg/kg': ['mean', 'std'],
          'K%': ['mean', 'std'],
          'Mg%': ['mean', 'std'],
          'Mn mg/kg': ['mean', 'std'],
          'N%': ['mean', 'std'],
          'Na mg/kg': ['mean', 'std'],
          'P%': ['mean', 'std'],
          'S%': ['mean', 'std'],
          'Zn mg/kg': ['mean', 'std']}


          Then pass on the object to pd.agg()



          my_data.groupby(["cod"], as_index = False).agg(groups_agg)





          share|improve this answer
























          • Worked very good. Is there any simple way to add a " ± " next to the std ?

            – Patrícia Almeida
            Nov 13 '18 at 11:29











          • I don't think so :(. But that can be achieved easily by having another column - my_data2['Mean_STD'] = my_data2['mean'] + (2*my_data2['std']). The negative can have another column

            – Vivek Kalyanarangan
            Nov 13 '18 at 11:35


















          0














          Write a dict comprehension with each of the column as key and ['mean', 'std'] as value first -



          groups_agg = { i:['mean', 'std'] for i in ['N%', 'P%','K%', 'Ca%', 'Mg%', 'S%', 'Fe mg/kg', 'Mn mg/kg', 'Zn mg/kg', 'Cu mg/kg', 'B mg/kg', 'Na mg/kg'] }


          It will look like this -



          {'B mg/kg': ['mean', 'std'],
          'Ca%': ['mean', 'std'],
          'Cu mg/kg': ['mean', 'std'],
          'Fe mg/kg': ['mean', 'std'],
          'K%': ['mean', 'std'],
          'Mg%': ['mean', 'std'],
          'Mn mg/kg': ['mean', 'std'],
          'N%': ['mean', 'std'],
          'Na mg/kg': ['mean', 'std'],
          'P%': ['mean', 'std'],
          'S%': ['mean', 'std'],
          'Zn mg/kg': ['mean', 'std']}


          Then pass on the object to pd.agg()



          my_data.groupby(["cod"], as_index = False).agg(groups_agg)





          share|improve this answer
























          • Worked very good. Is there any simple way to add a " ± " next to the std ?

            – Patrícia Almeida
            Nov 13 '18 at 11:29











          • I don't think so :(. But that can be achieved easily by having another column - my_data2['Mean_STD'] = my_data2['mean'] + (2*my_data2['std']). The negative can have another column

            – Vivek Kalyanarangan
            Nov 13 '18 at 11:35
















          0












          0








          0







          Write a dict comprehension with each of the column as key and ['mean', 'std'] as value first -



          groups_agg = { i:['mean', 'std'] for i in ['N%', 'P%','K%', 'Ca%', 'Mg%', 'S%', 'Fe mg/kg', 'Mn mg/kg', 'Zn mg/kg', 'Cu mg/kg', 'B mg/kg', 'Na mg/kg'] }


          It will look like this -



          {'B mg/kg': ['mean', 'std'],
          'Ca%': ['mean', 'std'],
          'Cu mg/kg': ['mean', 'std'],
          'Fe mg/kg': ['mean', 'std'],
          'K%': ['mean', 'std'],
          'Mg%': ['mean', 'std'],
          'Mn mg/kg': ['mean', 'std'],
          'N%': ['mean', 'std'],
          'Na mg/kg': ['mean', 'std'],
          'P%': ['mean', 'std'],
          'S%': ['mean', 'std'],
          'Zn mg/kg': ['mean', 'std']}


          Then pass on the object to pd.agg()



          my_data.groupby(["cod"], as_index = False).agg(groups_agg)





          share|improve this answer













          Write a dict comprehension with each of the column as key and ['mean', 'std'] as value first -



          groups_agg = { i:['mean', 'std'] for i in ['N%', 'P%','K%', 'Ca%', 'Mg%', 'S%', 'Fe mg/kg', 'Mn mg/kg', 'Zn mg/kg', 'Cu mg/kg', 'B mg/kg', 'Na mg/kg'] }


          It will look like this -



          {'B mg/kg': ['mean', 'std'],
          'Ca%': ['mean', 'std'],
          'Cu mg/kg': ['mean', 'std'],
          'Fe mg/kg': ['mean', 'std'],
          'K%': ['mean', 'std'],
          'Mg%': ['mean', 'std'],
          'Mn mg/kg': ['mean', 'std'],
          'N%': ['mean', 'std'],
          'Na mg/kg': ['mean', 'std'],
          'P%': ['mean', 'std'],
          'S%': ['mean', 'std'],
          'Zn mg/kg': ['mean', 'std']}


          Then pass on the object to pd.agg()



          my_data.groupby(["cod"], as_index = False).agg(groups_agg)






          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered Nov 13 '18 at 11:19









          Vivek KalyanaranganVivek Kalyanarangan

          5,0361827




          5,0361827













          • Worked very good. Is there any simple way to add a " ± " next to the std ?

            – Patrícia Almeida
            Nov 13 '18 at 11:29











          • I don't think so :(. But that can be achieved easily by having another column - my_data2['Mean_STD'] = my_data2['mean'] + (2*my_data2['std']). The negative can have another column

            – Vivek Kalyanarangan
            Nov 13 '18 at 11:35





















          • Worked very good. Is there any simple way to add a " ± " next to the std ?

            – Patrícia Almeida
            Nov 13 '18 at 11:29











          • I don't think so :(. But that can be achieved easily by having another column - my_data2['Mean_STD'] = my_data2['mean'] + (2*my_data2['std']). The negative can have another column

            – Vivek Kalyanarangan
            Nov 13 '18 at 11:35



















          Worked very good. Is there any simple way to add a " ± " next to the std ?

          – Patrícia Almeida
          Nov 13 '18 at 11:29





          Worked very good. Is there any simple way to add a " ± " next to the std ?

          – Patrícia Almeida
          Nov 13 '18 at 11:29













          I don't think so :(. But that can be achieved easily by having another column - my_data2['Mean_STD'] = my_data2['mean'] + (2*my_data2['std']). The negative can have another column

          – Vivek Kalyanarangan
          Nov 13 '18 at 11:35







          I don't think so :(. But that can be achieved easily by having another column - my_data2['Mean_STD'] = my_data2['mean'] + (2*my_data2['std']). The negative can have another column

          – Vivek Kalyanarangan
          Nov 13 '18 at 11:35




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53279822%2fgroupby-means-and-std%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Florida Star v. B. J. F.

          Danny Elfman

          Lugert, Oklahoma