Groupby, means and std
I'm new to python ... thank you in advance!
I need to group, calculate in a column the mean for each nutrient and the corresponding std.
As so:
cod | Nmean | Nstd | etc...for each nutrient
I managed to group and calculate the mean. But I need another column, for example, next to N%, with it's std ... and so on...
report = my_data.groupby(["cod"], as_index = False)[['N%', 'P%','K%', 'Ca%', 'Mg%', 'S%',
'Fe mg/kg', 'Mn mg/kg', 'Zn mg/kg', 'Cu mg/kg',
'B mg/kg', 'Na mg/kg']].mean()
python-3.x pandas jupyter-notebook
add a comment |
I'm new to python ... thank you in advance!
I need to group, calculate in a column the mean for each nutrient and the corresponding std.
As so:
cod | Nmean | Nstd | etc...for each nutrient
I managed to group and calculate the mean. But I need another column, for example, next to N%, with it's std ... and so on...
report = my_data.groupby(["cod"], as_index = False)[['N%', 'P%','K%', 'Ca%', 'Mg%', 'S%',
'Fe mg/kg', 'Mn mg/kg', 'Zn mg/kg', 'Cu mg/kg',
'B mg/kg', 'Na mg/kg']].mean()
python-3.x pandas jupyter-notebook
add a comment |
I'm new to python ... thank you in advance!
I need to group, calculate in a column the mean for each nutrient and the corresponding std.
As so:
cod | Nmean | Nstd | etc...for each nutrient
I managed to group and calculate the mean. But I need another column, for example, next to N%, with it's std ... and so on...
report = my_data.groupby(["cod"], as_index = False)[['N%', 'P%','K%', 'Ca%', 'Mg%', 'S%',
'Fe mg/kg', 'Mn mg/kg', 'Zn mg/kg', 'Cu mg/kg',
'B mg/kg', 'Na mg/kg']].mean()
python-3.x pandas jupyter-notebook
I'm new to python ... thank you in advance!
I need to group, calculate in a column the mean for each nutrient and the corresponding std.
As so:
cod | Nmean | Nstd | etc...for each nutrient
I managed to group and calculate the mean. But I need another column, for example, next to N%, with it's std ... and so on...
report = my_data.groupby(["cod"], as_index = False)[['N%', 'P%','K%', 'Ca%', 'Mg%', 'S%',
'Fe mg/kg', 'Mn mg/kg', 'Zn mg/kg', 'Cu mg/kg',
'B mg/kg', 'Na mg/kg']].mean()
python-3.x pandas jupyter-notebook
python-3.x pandas jupyter-notebook
asked Nov 13 '18 at 11:16
Patrícia AlmeidaPatrícia Almeida
31
31
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Write a dict
comprehension with each of the column as key and ['mean', 'std']
as value first -
groups_agg = { i:['mean', 'std'] for i in ['N%', 'P%','K%', 'Ca%', 'Mg%', 'S%', 'Fe mg/kg', 'Mn mg/kg', 'Zn mg/kg', 'Cu mg/kg', 'B mg/kg', 'Na mg/kg'] }
It will look like this -
{'B mg/kg': ['mean', 'std'],
'Ca%': ['mean', 'std'],
'Cu mg/kg': ['mean', 'std'],
'Fe mg/kg': ['mean', 'std'],
'K%': ['mean', 'std'],
'Mg%': ['mean', 'std'],
'Mn mg/kg': ['mean', 'std'],
'N%': ['mean', 'std'],
'Na mg/kg': ['mean', 'std'],
'P%': ['mean', 'std'],
'S%': ['mean', 'std'],
'Zn mg/kg': ['mean', 'std']}
Then pass on the object to pd.agg()
my_data.groupby(["cod"], as_index = False).agg(groups_agg)
Worked very good. Is there any simple way to add a " ± " next to the std ?
– Patrícia Almeida
Nov 13 '18 at 11:29
I don't think so :(. But that can be achieved easily by having another column -my_data2['Mean_STD'] = my_data2['mean'] + (2*my_data2['std'])
. The negative can have another column
– Vivek Kalyanarangan
Nov 13 '18 at 11:35
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53279822%2fgroupby-means-and-std%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Write a dict
comprehension with each of the column as key and ['mean', 'std']
as value first -
groups_agg = { i:['mean', 'std'] for i in ['N%', 'P%','K%', 'Ca%', 'Mg%', 'S%', 'Fe mg/kg', 'Mn mg/kg', 'Zn mg/kg', 'Cu mg/kg', 'B mg/kg', 'Na mg/kg'] }
It will look like this -
{'B mg/kg': ['mean', 'std'],
'Ca%': ['mean', 'std'],
'Cu mg/kg': ['mean', 'std'],
'Fe mg/kg': ['mean', 'std'],
'K%': ['mean', 'std'],
'Mg%': ['mean', 'std'],
'Mn mg/kg': ['mean', 'std'],
'N%': ['mean', 'std'],
'Na mg/kg': ['mean', 'std'],
'P%': ['mean', 'std'],
'S%': ['mean', 'std'],
'Zn mg/kg': ['mean', 'std']}
Then pass on the object to pd.agg()
my_data.groupby(["cod"], as_index = False).agg(groups_agg)
Worked very good. Is there any simple way to add a " ± " next to the std ?
– Patrícia Almeida
Nov 13 '18 at 11:29
I don't think so :(. But that can be achieved easily by having another column -my_data2['Mean_STD'] = my_data2['mean'] + (2*my_data2['std'])
. The negative can have another column
– Vivek Kalyanarangan
Nov 13 '18 at 11:35
add a comment |
Write a dict
comprehension with each of the column as key and ['mean', 'std']
as value first -
groups_agg = { i:['mean', 'std'] for i in ['N%', 'P%','K%', 'Ca%', 'Mg%', 'S%', 'Fe mg/kg', 'Mn mg/kg', 'Zn mg/kg', 'Cu mg/kg', 'B mg/kg', 'Na mg/kg'] }
It will look like this -
{'B mg/kg': ['mean', 'std'],
'Ca%': ['mean', 'std'],
'Cu mg/kg': ['mean', 'std'],
'Fe mg/kg': ['mean', 'std'],
'K%': ['mean', 'std'],
'Mg%': ['mean', 'std'],
'Mn mg/kg': ['mean', 'std'],
'N%': ['mean', 'std'],
'Na mg/kg': ['mean', 'std'],
'P%': ['mean', 'std'],
'S%': ['mean', 'std'],
'Zn mg/kg': ['mean', 'std']}
Then pass on the object to pd.agg()
my_data.groupby(["cod"], as_index = False).agg(groups_agg)
Worked very good. Is there any simple way to add a " ± " next to the std ?
– Patrícia Almeida
Nov 13 '18 at 11:29
I don't think so :(. But that can be achieved easily by having another column -my_data2['Mean_STD'] = my_data2['mean'] + (2*my_data2['std'])
. The negative can have another column
– Vivek Kalyanarangan
Nov 13 '18 at 11:35
add a comment |
Write a dict
comprehension with each of the column as key and ['mean', 'std']
as value first -
groups_agg = { i:['mean', 'std'] for i in ['N%', 'P%','K%', 'Ca%', 'Mg%', 'S%', 'Fe mg/kg', 'Mn mg/kg', 'Zn mg/kg', 'Cu mg/kg', 'B mg/kg', 'Na mg/kg'] }
It will look like this -
{'B mg/kg': ['mean', 'std'],
'Ca%': ['mean', 'std'],
'Cu mg/kg': ['mean', 'std'],
'Fe mg/kg': ['mean', 'std'],
'K%': ['mean', 'std'],
'Mg%': ['mean', 'std'],
'Mn mg/kg': ['mean', 'std'],
'N%': ['mean', 'std'],
'Na mg/kg': ['mean', 'std'],
'P%': ['mean', 'std'],
'S%': ['mean', 'std'],
'Zn mg/kg': ['mean', 'std']}
Then pass on the object to pd.agg()
my_data.groupby(["cod"], as_index = False).agg(groups_agg)
Write a dict
comprehension with each of the column as key and ['mean', 'std']
as value first -
groups_agg = { i:['mean', 'std'] for i in ['N%', 'P%','K%', 'Ca%', 'Mg%', 'S%', 'Fe mg/kg', 'Mn mg/kg', 'Zn mg/kg', 'Cu mg/kg', 'B mg/kg', 'Na mg/kg'] }
It will look like this -
{'B mg/kg': ['mean', 'std'],
'Ca%': ['mean', 'std'],
'Cu mg/kg': ['mean', 'std'],
'Fe mg/kg': ['mean', 'std'],
'K%': ['mean', 'std'],
'Mg%': ['mean', 'std'],
'Mn mg/kg': ['mean', 'std'],
'N%': ['mean', 'std'],
'Na mg/kg': ['mean', 'std'],
'P%': ['mean', 'std'],
'S%': ['mean', 'std'],
'Zn mg/kg': ['mean', 'std']}
Then pass on the object to pd.agg()
my_data.groupby(["cod"], as_index = False).agg(groups_agg)
answered Nov 13 '18 at 11:19
Vivek KalyanaranganVivek Kalyanarangan
5,0361827
5,0361827
Worked very good. Is there any simple way to add a " ± " next to the std ?
– Patrícia Almeida
Nov 13 '18 at 11:29
I don't think so :(. But that can be achieved easily by having another column -my_data2['Mean_STD'] = my_data2['mean'] + (2*my_data2['std'])
. The negative can have another column
– Vivek Kalyanarangan
Nov 13 '18 at 11:35
add a comment |
Worked very good. Is there any simple way to add a " ± " next to the std ?
– Patrícia Almeida
Nov 13 '18 at 11:29
I don't think so :(. But that can be achieved easily by having another column -my_data2['Mean_STD'] = my_data2['mean'] + (2*my_data2['std'])
. The negative can have another column
– Vivek Kalyanarangan
Nov 13 '18 at 11:35
Worked very good. Is there any simple way to add a " ± " next to the std ?
– Patrícia Almeida
Nov 13 '18 at 11:29
Worked very good. Is there any simple way to add a " ± " next to the std ?
– Patrícia Almeida
Nov 13 '18 at 11:29
I don't think so :(. But that can be achieved easily by having another column -
my_data2['Mean_STD'] = my_data2['mean'] + (2*my_data2['std'])
. The negative can have another column– Vivek Kalyanarangan
Nov 13 '18 at 11:35
I don't think so :(. But that can be achieved easily by having another column -
my_data2['Mean_STD'] = my_data2['mean'] + (2*my_data2['std'])
. The negative can have another column– Vivek Kalyanarangan
Nov 13 '18 at 11:35
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53279822%2fgroupby-means-and-std%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown