Skip to main content

Mole fraction









Mole fraction


From Wikipedia, the free encyclopedia

Jump to navigation
Jump to search


In chemistry, the mole fraction or molar fraction (xi) is defined as the amount of a constituent (expressed in moles), ni, divided by the total amount of all constituents in a mixture (also expressed in moles), ntot:[1]


xi=nintot{displaystyle x_{i}={frac {n_{i}}{n_{mathrm {tot} }}}}{displaystyle x_{i}={frac {n_{i}}{n_{mathrm {tot} }}}}

The sum of all the mole fractions is equal to 1:


i=1Nni=ntot;∑i=1Nxi=1{displaystyle sum _{i=1}^{N}n_{i}=n_{mathrm {tot} };;sum _{i=1}^{N}x_{i}=1}{displaystyle sum _{i=1}^{N}n_{i}=n_{mathrm {tot} };;sum _{i=1}^{N}x_{i}=1}

The same concept expressed with a denominator of 100 is the mole percent or molar percentage or molar proportion (mol%).


The mole fraction is also called the amount fraction.[1] It is identical to the number fraction, which is defined as the number of molecules of a constituent Ni divided by the total number of all molecules Ntot. The mole fraction is sometimes denoted by the lowercase Greek letter χ (chi) instead of a Roman x.[2][3] For mixtures of gases, IUPAC recommends the letter y.[1]


The National Institute of Standards and Technology of the United States prefers the term amount-of-substance fraction over mole fraction because it does not contain the name of the unit mole.[4]


Whereas mole fraction is a ratio of moles to moles, molar concentration is a quotient of moles to volume.


The mole fraction is one way of expressing the composition of a mixture with a dimensionless quantity; mass fraction (percentage by weight, wt%) and volume fraction (percentage by volume, vol%) are others.




Contents






  • 1 Properties


  • 2 Related quantities


    • 2.1 Mass fraction


    • 2.2 Molar mixing ratio


      • 2.2.1 Mixing binary mixtures with a common component to form ternary mixtures




    • 2.3 Mole percentage


    • 2.4 Mass concentration


    • 2.5 Molar concentration


    • 2.6 Mass and molar mass




  • 3 Spatial variation and gradient


  • 4 References





Properties[edit]


Mole fraction is used very frequently in the construction of phase diagrams. It has a number of advantages:



  • it is not temperature dependent (such as molar concentration) and does not require knowledge of the densities of the phase(s) involved

  • a mixture of known mole fraction can be prepared by weighing off the appropriate masses of the constituents

  • the measure is symmetric: in the mole fractions x = 0.1 and x = 0.9, the roles of 'solvent' and 'solute' are reversed.

  • In a mixture of ideal gases, the mole fraction can be expressed as the ratio of partial pressure to total pressure of the mixture

  • In a ternary mixture one can express mole fractions of a component as functions of other components mole fraction and binary mole ratios:


x1=1−x21+x3x1{displaystyle x_{1}={frac {1-x_{2}}{1+{frac {x_{3}}{x_{1}}}}}}{displaystyle x_{1}={frac {1-x_{2}}{1+{frac {x_{3}}{x_{1}}}}}}


x3=1−x21+x1x3{displaystyle x_{3}={frac {1-x_{2}}{1+{frac {x_{1}}{x_{3}}}}}}{displaystyle x_{3}={frac {1-x_{2}}{1+{frac {x_{1}}{x_{3}}}}}}


Differential quotients can be formed at constant ratios like those above:


(∂x1∂x2)x1x3=−x11−x2{displaystyle left({frac {partial x_{1}}{partial x_{2}}}right)_{frac {x_{1}}{x_{3}}}=-{frac {x_{1}}{1-x_{2}}}}{displaystyle left({frac {partial x_{1}}{partial x_{2}}}right)_{frac {x_{1}}{x_{3}}}=-{frac {x_{1}}{1-x_{2}}}}


or


(∂x3∂x2)x1x3=−x31−x2{displaystyle left({frac {partial x_{3}}{partial x_{2}}}right)_{frac {x_{1}}{x_{3}}}=-{frac {x_{3}}{1-x_{2}}}}{displaystyle left({frac {partial x_{3}}{partial x_{2}}}right)_{frac {x_{1}}{x_{3}}}=-{frac {x_{3}}{1-x_{2}}}}


Ratios X, Y, Z of mole fractions can be written for ternary and multicomponent systems:


X=x3x1+x3{displaystyle X={frac {x_{3}}{x_{1}+x_{3}}}}{displaystyle X={frac {x_{3}}{x_{1}+x_{3}}}}


Y=x3x2+x3{displaystyle Y={frac {x_{3}}{x_{2}+x_{3}}}}{displaystyle Y={frac {x_{3}}{x_{2}+x_{3}}}}


Z=x2x1+x2{displaystyle Z={frac {x_{2}}{x_{1}+x_{2}}}}{displaystyle Z={frac {x_{2}}{x_{1}+x_{2}}}}


These can be used for solving pde like:


(∂μ2∂n1)n2,n3=(∂μ1∂n2)n1,n3{displaystyle left({frac {partial mu _{2}}{partial n_{1}}}right)_{n_{2},n_{3}}=left({frac {partial mu _{1}}{partial n_{2}}}right)_{n_{1},n_{3}}}{displaystyle left({frac {partial mu _{2}}{partial n_{1}}}right)_{n_{2},n_{3}}=left({frac {partial mu _{1}}{partial n_{2}}}right)_{n_{1},n_{3}}}


or


(∂μ2∂n1)n2,n3,n4...,ni=(∂μ1∂n2)n1,n3,n4...,ni{displaystyle left({frac {partial mu _{2}}{partial n_{1}}}right)_{n_{2},n_{3},n_{4}...,n_{i}}=left({frac {partial mu _{1}}{partial n_{2}}}right)_{n_{1},n_{3},n_{4}...,n_{i}}}{displaystyle left({frac {partial mu _{2}}{partial n_{1}}}right)_{n_{2},n_{3},n_{4}...,n_{i}}=left({frac {partial mu _{1}}{partial n_{2}}}right)_{n_{1},n_{3},n_{4}...,n_{i}}}


This equality can be rearranged to have differential quotient of mole amounts or fractions on one side.


(∂μ2∂μ1)n2,n3=−(∂n1∂n2)μ1,n3=−(∂x1∂x2)μ1,n3{displaystyle left({frac {partial mu _{2}}{partial mu _{1}}}right)_{n_{2},n_{3}}=-left({frac {partial n_{1}}{partial n_{2}}}right)_{mu _{1},n_{3}}=-left({frac {partial x_{1}}{partial x_{2}}}right)_{mu _{1},n_{3}}}{displaystyle left({frac {partial mu _{2}}{partial mu _{1}}}right)_{n_{2},n_{3}}=-left({frac {partial n_{1}}{partial n_{2}}}right)_{mu _{1},n_{3}}=-left({frac {partial x_{1}}{partial x_{2}}}right)_{mu _{1},n_{3}}}


or


(∂μ2∂μ1)n2,n3,n4,...ni=−(∂n1∂n2)μ1,n2,n4...,ni{displaystyle left({frac {partial mu _{2}}{partial mu _{1}}}right)_{n_{2},n_{3},n_{4},...n_{i}}=-left({frac {partial n_{1}}{partial n_{2}}}right)_{mu _{1},n_{2},n_{4}...,n_{i}}}{displaystyle left({frac {partial mu _{2}}{partial mu _{1}}}right)_{n_{2},n_{3},n_{4},...n_{i}}=-left({frac {partial n_{1}}{partial n_{2}}}right)_{mu _{1},n_{2},n_{4}...,n_{i}}}


Mole amounts can be eliminated by forming ratios:


(∂n1∂n2)n3=(∂n1n3∂n2n3)n3=(∂x1x3∂x2x3)n3{displaystyle left({frac {partial n_{1}}{partial n_{2}}}right)_{n_{3}}=left({frac {partial {frac {n_{1}}{n_{3}}}}{partial {frac {n_{2}}{n_{3}}}}}right)_{n_{3}}=left({frac {partial {frac {x_{1}}{x_{3}}}}{partial {frac {x_{2}}{x_{3}}}}}right)_{n_{3}}}{displaystyle left({frac {partial n_{1}}{partial n_{2}}}right)_{n_{3}}=left({frac {partial {frac {n_{1}}{n_{3}}}}{partial {frac {n_{2}}{n_{3}}}}}right)_{n_{3}}=left({frac {partial {frac {x_{1}}{x_{3}}}}{partial {frac {x_{2}}{x_{3}}}}}right)_{n_{3}}}


Thus the ratio of chemical potentials becomes:


(∂μ2∂μ1)n2n3=−(∂x1x3∂x2x3)μ1{displaystyle left({frac {partial mu _{2}}{partial mu _{1}}}right)_{frac {n_{2}}{n_{3}}}=-left({frac {partial {frac {x_{1}}{x_{3}}}}{partial {frac {x_{2}}{x_{3}}}}}right)_{mu _{1}}}{displaystyle left({frac {partial mu _{2}}{partial mu _{1}}}right)_{frac {n_{2}}{n_{3}}}=-left({frac {partial {frac {x_{1}}{x_{3}}}}{partial {frac {x_{2}}{x_{3}}}}}right)_{mu _{1}}}


Similarly the ratio for the multicomponents system becomes


(∂μ2∂μ1)n2n3,n3n4,...ni−1ni=−(∂x1x3∂x2x3)μ1,n3n4,...ni−1ni{displaystyle left({frac {partial mu _{2}}{partial mu _{1}}}right)_{{frac {n_{2}}{n_{3}}},{frac {n_{3}}{n_{4}}},...{frac {n_{i-1}}{n_{i}}}}=-left({frac {partial {frac {x_{1}}{x_{3}}}}{partial {frac {x_{2}}{x_{3}}}}}right)_{mu _{1},{frac {n_{3}}{n_{4}}},...{frac {n_{i-1}}{n_{i}}}}}{displaystyle left({frac {partial mu _{2}}{partial mu _{1}}}right)_{{frac {n_{2}}{n_{3}}},{frac {n_{3}}{n_{4}}},...{frac {n_{i-1}}{n_{i}}}}=-left({frac {partial {frac {x_{1}}{x_{3}}}}{partial {frac {x_{2}}{x_{3}}}}}right)_{mu _{1},{frac {n_{3}}{n_{4}}},...{frac {n_{i-1}}{n_{i}}}}}



Related quantities[edit]



Mass fraction[edit]


The mass fraction wi can be calculated using the formula


wi=xi⋅MiM{displaystyle w_{i}=x_{i}cdot {frac {M_{i}}{M}}}w_{i}=x_{i}cdot {frac {M_{i}}{M}}

where Mi is the molar mass of the component i and M is the average molar mass of the mixture.


Replacing the expression of the molar mass:


wi=xi⋅Mi∑ixiMi{displaystyle w_{i}=x_{i}cdot {frac {M_{i}}{sum _{i}x_{i}M_{i}}}}w_{i}=x_{i}cdot {frac {M_{i}}{sum _{i}x_{i}M_{i}}}


Molar mixing ratio[edit]


The mixing of two pure components can be expressed introducing the amount or molar mixing ratio of them rn=n2n1{displaystyle r_{n}={frac {n_{2}}{n_{1}}}}{displaystyle r_{n}={frac {n_{2}}{n_{1}}}}. Then the mole fractions of the components will be:



x1=11+rn{displaystyle x_{1}={frac {1}{1+r_{n}}}}{displaystyle x_{1}={frac {1}{1+r_{n}}}}

x2=rn1+rn{displaystyle x_{2}={frac {r_{n}}{1+r_{n}}}}{displaystyle x_{2}={frac {r_{n}}{1+r_{n}}}}


The amount ratio equals the ratio of mole fractions of components:


n2n1=x2x1{displaystyle {frac {n_{2}}{n_{1}}}={frac {x_{2}}{x_{1}}}}{displaystyle {frac {n_{2}}{n_{1}}}={frac {x_{2}}{x_{1}}}}

due to division of both numerator and denominator by the sum of molar amounts of components. This property has consequences for representations of phase diagrams using, for instance, ternary plots.



Mixing binary mixtures with a common component to form ternary mixtures[edit]


Mixing binary mixtures with a common component gives a ternary mixture with certain mixing ratios between the three components. These mixing ratios from the ternary and the corresponding mole fractions of the ternary mixture x1(123), x2(123), x3(123) can be expressed as a function of several mixing ratios involved, the mixing ratios between the components of the binary mixtures and the mixing ratio of the binary mixtures to form the ternary one.


x1(123)=n(12)x1(12)+n13x1(13)n(12)+n(13){displaystyle x_{1(123)}={frac {n_{(12)}x_{1(12)}+n_{13}x_{1(13)}}{n_{(12)}+n_{(13)}}}}{displaystyle x_{1(123)}={frac {n_{(12)}x_{1(12)}+n_{13}x_{1(13)}}{n_{(12)}+n_{(13)}}}}


Mole percentage[edit]


Multiplying mole fraction by 100 gives the mole percentage, also referred as amount/amount percent (abbreviated as n/n%).



Mass concentration[edit]


The conversion to and from mass concentration ρi is given by:


xi=ρMMi{displaystyle x_{i}={frac {rho _{i}}{rho }}cdot {frac {M}{M_{i}}}}x_{i}={frac {rho _{i}}{rho }}cdot {frac {M}{M_{i}}}

where M is the average molar mass of the mixture.


ρi=xiρMiM{displaystyle rho _{i}=x_{i}rho cdot {frac {M_{i}}{M}}}rho _{i}=x_{i}rho cdot {frac {M_{i}}{M}}


Molar concentration[edit]


The conversion to molar concentration ci is given by:


ci=xi⋅ρM=xic{displaystyle c_{i}={frac {x_{i}cdot rho }{M}}=x_{i}c}{displaystyle c_{i}={frac {x_{i}cdot rho }{M}}=x_{i}c}

or


ci=xi⋅ρixiMi{displaystyle c_{i}={frac {x_{i}cdot rho }{sum _{i}x_{i}M_{i}}}}{displaystyle c_{i}={frac {x_{i}cdot rho }{sum _{i}x_{i}M_{i}}}}

where M is the average molar mass of the solution, c is the total molar concentration and ρ is the density of the solution.



Mass and molar mass[edit]


The mole fraction can be calculated from the masses mi and molar masses Mi of the components:


xi=miMi∑imiMi{displaystyle x_{i}={frac {frac {m_{i}}{M_{i}}}{sum _{i}{frac {m_{i}}{M_{i}}}}}}{displaystyle x_{i}={frac {frac {m_{i}}{M_{i}}}{sum _{i}{frac {m_{i}}{M_{i}}}}}}


Spatial variation and gradient[edit]


In a spatially non-uniform mixture, the mole fraction gradient triggers the phenomenon of diffusion.



References[edit]





  1. ^ abc IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006–) "amount fraction".


  2. ^ Zumdahl, Steven S. (2008). Chemistry (8th ed.). Cengage Learning. p. 201. ISBN 0-547-12532-1..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  3. ^ Rickard, James N.; Spencer, George M.; Bodner, Lyman H. (2010). Chemistry: Structure and Dynamics (5th ed.). Hoboken, N.J.: Wiley. p. 357. ISBN 978-0-470-58711-9.


  4. ^ Thompson, A.; Taylor, B. N. "The NIST Guide for the use of the International System of Units". National Institute of Standards and Technology. Retrieved 5 July 2014.













Retrieved from "https://en.wikipedia.org/w/index.php?title=Mole_fraction&oldid=852670292"





Navigation menu

























(window.RLQ=window.RLQ||).push(function(){mw.config.set({"wgPageParseReport":{"limitreport":{"cputime":"0.184","walltime":"0.304","ppvisitednodes":{"value":518,"limit":1000000},"ppgeneratednodes":{"value":0,"limit":1500000},"postexpandincludesize":{"value":22833,"limit":2097152},"templateargumentsize":{"value":98,"limit":2097152},"expansiondepth":{"value":7,"limit":40},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":9618,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 132.056 1 -total"," 84.92% 112.142 1 Template:Reflist"," 65.88% 87.004 2 Template:Cite_book"," 11.67% 15.406 2 Template:Navbox"," 10.38% 13.705 1 Template:Mole_concepts"," 4.58% 6.047 1 Template:Chemical_solutions"," 4.53% 5.977 1 Template:Cite_web"," 1.98% 2.610 1 Template:GoldBookRef"," 1.72% 2.269 1 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.065","limit":"10.000"},"limitreport-memusage":{"value":2325301,"limit":52428800}},"cachereport":{"origin":"mw1269","timestamp":"20181026161037","ttl":1900800,"transientcontent":false}}});mw.config.set({"wgBackendResponseTime":411,"wgHostname":"mw1269"});});

Popular posts from this blog

Florida Star v. B. J. F.

Danny Elfman

Lugert, Oklahoma