Hadron
In particle physics, a hadron /ˈhædrɒn/ ( listen) (Greek: ἁδρός, hadrós, "stout, thick") is a composite particle made of two or more quarks held together by the strong force in a similar way as molecules are held together by the electromagnetic force. Most of the mass of ordinary matter comes from two hadrons, the proton and the neutron.
Hadrons are categorized into two families: baryons, made of an odd number of quarks - usually three quarks - and mesons, made of an even number of quarks - usually one quark and one antiquark.[1]Protons and neutrons are examples of baryons; pions are an example of a meson. "Exotic" hadrons, containing more than three valence quarks, have been discovered in recent years. A tetraquark state (an exotic meson), named the Z(4430)−, was discovered in 2007 by the Belle Collaboration[2] and confirmed as a resonance in 2014 by the LHCb collaboration.[3] Two pentaquark states (exotic baryons), named P+
c(4380) and P+
c(4450), were discovered in 2015 by the LHCb collaboration.[4] There are several more exotic hadron candidates, and other colour-singlet quark combinations that may also exist.
Almost all "free" hadrons and antihadrons (meaning, in isolation and not bound within an atomic nucleus) are believed to be unstable and eventually decay (break down) into other particles. The only known exception relates to free protons, which are possibly stable, or at least, take immense amounts of time to decay (order of 1034+ years). Free neutrons are unstable and decay with a half-life of about 611 seconds. Their respective antiparticles are expected to follow the same pattern, but they are difficult to capture and study, because they immediately annihilate on contact with ordinary matter. "Bound" protons and neutrons, contained within an atomic nucleus, are generally considered stable. Experimentally, hadron physics is studied by colliding protons or nuclei of heavy elements such as lead or gold, and detecting the debris in the produced particle showers. In the environment, mesons such as pions are produced by the collisions of cosmic rays with the atmosphere.
Contents
1 Etymology
2 Properties
3 Baryons
4 Mesons
5 See also
6 References
7 External links
Etymology
The term "hadron" was introduced by Lev B. Okun in a plenary talk at the 1962 International Conference on High Energy Physics.[5] In this talk he said:
.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 40px}.mw-parser-output .templatequote .templatequotecite{line-height:1.5em;text-align:left;padding-left:1.6em;margin-top:0}
Notwithstanding the fact that this report deals with weak interactions, we shall frequently have to speak of strongly interacting particles. These particles pose not only numerous scientific problems, but also a terminological problem. The point is that "strongly interacting particles" is a very clumsy term which does not yield itself to the formation of an adjective. For this reason, to take but one instance, decays into strongly interacting particles are called non-leptonic. This definition is not exact because "non-leptonic" may also signify "photonic". In this report I shall call strongly interacting particles "hadrons", and the corresponding decays "hadronic" (the Greek ἁδρός signifies "large", "massive", in contrast to λεπτός which means "small", "light"). I hope that this terminology will prove to be convenient.
Properties
According to the quark model,[6] the properties of hadrons are primarily determined by their so-called valence quarks. For example, a proton is composed of two up quarks (each with electric charge +2⁄3, for a total of +4⁄3 together) and one down quark (with electric charge −1⁄3). Adding these together yields the proton charge of +1. Although quarks also carry color charge, hadrons must have zero total color charge because of a phenomenon called color confinement. That is, hadrons must be "colorless" or "white". The simplest ways for this to occur are with a quark of one color and an antiquark of the corresponding anticolor, or three quarks of different colors. Hadrons with the first arrangement are a type of baryon, and those with the second arrangement are a type of meson.
Massless virtual gluons compose the numerical majority of particles inside hadrons. The strength of the strong force gluons which bind the quarks together has sufficient energy (E) to have resonances composed of massive (m) quarks (E > mc2) . One outcome is that short-lived pairs of virtual quarks and antiquarks are continually forming and vanishing again inside a hadron. Because the virtual quarks are not stable wave packets (quanta), but an irregular and transient phenomenon, it is not meaningful to ask which quark is real and which virtual; only the small excess is apparent from the outside in the form of a hadron. Therefore when a hadron or anti-hadron is stated to consist of (typically) 2 or 3 quarks, this technically refers to the constant excess of quarks vs. antiquarks.
Like all subatomic particles, hadrons are assigned quantum numbers corresponding to the representations of the Poincaré group: JPC(m), where J is the spin quantum number, P the intrinsic parity (or P-parity), C the charge conjugation (or C-parity), and m the particle's mass. Note that the mass of a hadron has very little to do with the mass of its valence quarks; rather, due to mass–energy equivalence, most of the mass comes from the large amount of energy associated with the strong interaction. Hadrons may also carry flavor quantum numbers such as isospin (G parity), and strangeness. All quarks carry an additive, conserved quantum number called a baryon number (B), which is +1⁄3 for quarks and −1⁄3 for antiquarks. This means that baryons (composite particles made of three, five or a larger odd number of quarks) have B = 1 whereas mesons have B = 0.
Hadrons have excited states known as resonances. Each ground state hadron may have several excited states; several hundreds of resonances have been observed in experiments. Resonances decay extremely quickly (within about 10−24seconds) via the strong nuclear force.
In other phases of matter the hadrons may disappear. For example, at very high temperature and high pressure, unless there are sufficiently many flavors of quarks, the theory of quantum chromodynamics (QCD) predicts that quarks and gluons will no longer be confined within hadrons, "because the strength of the strong interaction diminishes with energy". This property, which is known as asymptotic freedom, has been experimentally confirmed in the energy range between 1 GeV (gigaelectronvolt) and 1 TeV (teraelectronvolt).[7]
All free hadrons except (possibly) the proton and antiproton are unstable.
Baryons
Baryons are hadrons containing an odd number of valence quarks (at least 3).[1] Most well known baryons such as the proton and neutron have three valence quarks, but pentaquarks with five quarks - three quarks of different colors, and also one extra quark-antiquark pair - have also been proven to exist. Because baryons have an odd number of quarks, they are also all fermions, i.e., they have half-integer spin. As quarks possess baryon number B = 1⁄3, baryons have baryon number B = 1.
Each type of baryon has a corresponding antiparticle (antibaryon) in which quarks are replaced by their corresponding antiquarks. For example, just as a proton is made of two up-quarks and one down-quark, its corresponding antiparticle, the antiproton, is made of two up-antiquarks and one down-antiquark.
As of August 2015, there are two known pentaquarks, P+
c(4380) and P+
c(4450), both discovered in 2015 by the LHCb collaboration.[4]
Mesons
Mesons are hadrons containing an even number of valence quarks (at least 2).[1] Most well known mesons are composed of a quark-antiquark pair, but possible tetraquarks (4 quarks) and hexaquarks (6 quarks, comprising either a dibaryon or three quark-antiquark pairs) may have been discovered and are being investigated to confirm their nature.[8] Several other hypothetical types of exotic meson may exist which do not fall within the quark model of classification. These include glueballs and hybrid mesons (mesons bound by excited gluons).
Because mesons have an even number of quarks, they are also all bosons, with integer spin, i.e., 0, 1, or −1. They have baryon number B = 1⁄3 − 1⁄3 = 0. Examples of mesons commonly produced in particle physics experiments include pions and kaons. Pions also play a role in holding atomic nuclei together via the residual strong force.
See also
|
- Exotic hadron
Hadron therapy, a.k.a. particle therapy
Hadronization, the formation of hadrons out of quarks and gluons
Large Hadron Collider (LHC)- List of particles
- Standard model
- Subatomic particles
References
^ abc Gell-Mann, M. (1964). "A schematic model of baryons and mesons". Physics Letters. 8 (3): 214–215. Bibcode:1964PhL.....8..214G. doi:10.1016/S0031-9163(64)92001-3..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
^
Choi, S.-K.; Belle Collaboration; et al. (2008). "Observation of a resonance-like structure in the
π±
Ψ′ mass distribution in exclusive B→K
π±
Ψ′ decays". Physical Review Letters. 100 (14): 142001. arXiv:0708.1790. Bibcode:2008PhRvL.100n2001C. doi:10.1103/PhysRevLett.100.142001. PMID 18518023.
^ LHCb collaboration (2014): Observation of the resonant character of the Z(4430)− state
^ ab
R. Aaij et al. (LHCb collaboration) (2015). "Observation of J/ψp resonances consistent with pentaquark states in Λ0
b→J/ψK−p decays". Physical Review Letters. 115 (7): 072001. arXiv:1507.03414. Bibcode:2015PhRvL.115g2001A. doi:10.1103/PhysRevLett.115.072001. PMID 26317714.
^
Lev B. Okun (1962). "The Theory of Weak Interaction". Proceedings of 1962 International Conference on High-Energy Physics at CERN. Geneva. p. 845. Bibcode:1962hep..conf..845O.
^
C. Amsler et al. (Particle Data Group) (2008). "Review of Particle Physics – Quark Model" (PDF). Physics Letters B. 667 (1): 1–6. Bibcode:2008PhLB..667....1A. doi:10.1016/j.physletb.2008.07.018.
^
S. Bethke (2007). "Experimental tests of asymptotic freedom". Progress in Particle and Nuclear Physics. 58 (2): 351–386. arXiv:hep-ex/0606035. Bibcode:2007PrPNP..58..351B. doi:10.1016/j.ppnp.2006.06.001.
^ Mysterious Subatomic Particle May Represent Exotic New Form of Matter
External links
The dictionary definition of hadron at Wiktionary