Shifting multi-column data to the left Pandas Dataframe [duplicate]












1
















This question already has an answer here:




  • Left justify string values in a pandas DataFrame

    1 answer




I'd like to make whole columns data moved to left.
Only data should be shifted to the left 1 time and the columns should be fixed.
Could you tell me how can I do this?




Initial Data is :




              A1   A2   A3   A4   A5
#0001 421 000 000 777 888
#0002 382 403 430 320 055
#0003 441 304 403 403 403
#0004 430 403 206 N/A 312
#0005 N/A 394 493 N/A 403



Desire Data is :




              A1   A2   A3   A4   A5
#0001 000 000 777 888 N/A
#0002 403 430 320 055 N/A
#0003 304 403 403 403 N/A
#0004 403 206 N/A 312 N/A
#0005 394 493 N/A 403 N/A









share|improve this question













marked as duplicate by coldspeed pandas
Users with the  pandas badge can single-handedly close pandas questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 15 '18 at 5:32


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.



















  • stackoverflow.com/a/47898659/4909087 works for numeric data, check the link.

    – coldspeed
    Nov 15 '18 at 5:32











  • @coldspeed Can you please write a comment on how to use justify to this scenario. To learn how it works before deleting my answer.

    – Sandeep Kadapa
    Nov 15 '18 at 5:59











  • @SandeepKadapa If they are numbers, you can simply pass an array to justify: v = df.values; v = justify(v); df.values[:] = v

    – coldspeed
    Nov 15 '18 at 6:02











  • @coldspeed Checked isn't giving right results also the output array contains extreme values -2147483648 in place of np.nan. Could you verify it?.

    – Sandeep Kadapa
    Nov 15 '18 at 6:10











  • @coldspeed : that question is quite different. This question can be solved by much simpler answers.

    – rnso
    Nov 15 '18 at 6:38
















1
















This question already has an answer here:




  • Left justify string values in a pandas DataFrame

    1 answer




I'd like to make whole columns data moved to left.
Only data should be shifted to the left 1 time and the columns should be fixed.
Could you tell me how can I do this?




Initial Data is :




              A1   A2   A3   A4   A5
#0001 421 000 000 777 888
#0002 382 403 430 320 055
#0003 441 304 403 403 403
#0004 430 403 206 N/A 312
#0005 N/A 394 493 N/A 403



Desire Data is :




              A1   A2   A3   A4   A5
#0001 000 000 777 888 N/A
#0002 403 430 320 055 N/A
#0003 304 403 403 403 N/A
#0004 403 206 N/A 312 N/A
#0005 394 493 N/A 403 N/A









share|improve this question













marked as duplicate by coldspeed pandas
Users with the  pandas badge can single-handedly close pandas questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 15 '18 at 5:32


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.



















  • stackoverflow.com/a/47898659/4909087 works for numeric data, check the link.

    – coldspeed
    Nov 15 '18 at 5:32











  • @coldspeed Can you please write a comment on how to use justify to this scenario. To learn how it works before deleting my answer.

    – Sandeep Kadapa
    Nov 15 '18 at 5:59











  • @SandeepKadapa If they are numbers, you can simply pass an array to justify: v = df.values; v = justify(v); df.values[:] = v

    – coldspeed
    Nov 15 '18 at 6:02











  • @coldspeed Checked isn't giving right results also the output array contains extreme values -2147483648 in place of np.nan. Could you verify it?.

    – Sandeep Kadapa
    Nov 15 '18 at 6:10











  • @coldspeed : that question is quite different. This question can be solved by much simpler answers.

    – rnso
    Nov 15 '18 at 6:38














1












1








1









This question already has an answer here:




  • Left justify string values in a pandas DataFrame

    1 answer




I'd like to make whole columns data moved to left.
Only data should be shifted to the left 1 time and the columns should be fixed.
Could you tell me how can I do this?




Initial Data is :




              A1   A2   A3   A4   A5
#0001 421 000 000 777 888
#0002 382 403 430 320 055
#0003 441 304 403 403 403
#0004 430 403 206 N/A 312
#0005 N/A 394 493 N/A 403



Desire Data is :




              A1   A2   A3   A4   A5
#0001 000 000 777 888 N/A
#0002 403 430 320 055 N/A
#0003 304 403 403 403 N/A
#0004 403 206 N/A 312 N/A
#0005 394 493 N/A 403 N/A









share|improve this question















This question already has an answer here:




  • Left justify string values in a pandas DataFrame

    1 answer




I'd like to make whole columns data moved to left.
Only data should be shifted to the left 1 time and the columns should be fixed.
Could you tell me how can I do this?




Initial Data is :




              A1   A2   A3   A4   A5
#0001 421 000 000 777 888
#0002 382 403 430 320 055
#0003 441 304 403 403 403
#0004 430 403 206 N/A 312
#0005 N/A 394 493 N/A 403



Desire Data is :




              A1   A2   A3   A4   A5
#0001 000 000 777 888 N/A
#0002 403 430 320 055 N/A
#0003 304 403 403 403 N/A
#0004 403 206 N/A 312 N/A
#0005 394 493 N/A 403 N/A




This question already has an answer here:




  • Left justify string values in a pandas DataFrame

    1 answer








python pandas






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Nov 15 '18 at 4:41









Landon NamLandon Nam

212




212




marked as duplicate by coldspeed pandas
Users with the  pandas badge can single-handedly close pandas questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 15 '18 at 5:32


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









marked as duplicate by coldspeed pandas
Users with the  pandas badge can single-handedly close pandas questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 15 '18 at 5:32


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.















  • stackoverflow.com/a/47898659/4909087 works for numeric data, check the link.

    – coldspeed
    Nov 15 '18 at 5:32











  • @coldspeed Can you please write a comment on how to use justify to this scenario. To learn how it works before deleting my answer.

    – Sandeep Kadapa
    Nov 15 '18 at 5:59











  • @SandeepKadapa If they are numbers, you can simply pass an array to justify: v = df.values; v = justify(v); df.values[:] = v

    – coldspeed
    Nov 15 '18 at 6:02











  • @coldspeed Checked isn't giving right results also the output array contains extreme values -2147483648 in place of np.nan. Could you verify it?.

    – Sandeep Kadapa
    Nov 15 '18 at 6:10











  • @coldspeed : that question is quite different. This question can be solved by much simpler answers.

    – rnso
    Nov 15 '18 at 6:38



















  • stackoverflow.com/a/47898659/4909087 works for numeric data, check the link.

    – coldspeed
    Nov 15 '18 at 5:32











  • @coldspeed Can you please write a comment on how to use justify to this scenario. To learn how it works before deleting my answer.

    – Sandeep Kadapa
    Nov 15 '18 at 5:59











  • @SandeepKadapa If they are numbers, you can simply pass an array to justify: v = df.values; v = justify(v); df.values[:] = v

    – coldspeed
    Nov 15 '18 at 6:02











  • @coldspeed Checked isn't giving right results also the output array contains extreme values -2147483648 in place of np.nan. Could you verify it?.

    – Sandeep Kadapa
    Nov 15 '18 at 6:10











  • @coldspeed : that question is quite different. This question can be solved by much simpler answers.

    – rnso
    Nov 15 '18 at 6:38

















stackoverflow.com/a/47898659/4909087 works for numeric data, check the link.

– coldspeed
Nov 15 '18 at 5:32





stackoverflow.com/a/47898659/4909087 works for numeric data, check the link.

– coldspeed
Nov 15 '18 at 5:32













@coldspeed Can you please write a comment on how to use justify to this scenario. To learn how it works before deleting my answer.

– Sandeep Kadapa
Nov 15 '18 at 5:59





@coldspeed Can you please write a comment on how to use justify to this scenario. To learn how it works before deleting my answer.

– Sandeep Kadapa
Nov 15 '18 at 5:59













@SandeepKadapa If they are numbers, you can simply pass an array to justify: v = df.values; v = justify(v); df.values[:] = v

– coldspeed
Nov 15 '18 at 6:02





@SandeepKadapa If they are numbers, you can simply pass an array to justify: v = df.values; v = justify(v); df.values[:] = v

– coldspeed
Nov 15 '18 at 6:02













@coldspeed Checked isn't giving right results also the output array contains extreme values -2147483648 in place of np.nan. Could you verify it?.

– Sandeep Kadapa
Nov 15 '18 at 6:10





@coldspeed Checked isn't giving right results also the output array contains extreme values -2147483648 in place of np.nan. Could you verify it?.

– Sandeep Kadapa
Nov 15 '18 at 6:10













@coldspeed : that question is quite different. This question can be solved by much simpler answers.

– rnso
Nov 15 '18 at 6:38





@coldspeed : that question is quite different. This question can be solved by much simpler answers.

– rnso
Nov 15 '18 at 6:38












2 Answers
2






active

oldest

votes


















0














Use double transpose with shift:



df = df.T.shift(-1,axis=0).T

print(df)

A1 A2 A3 A4 A5
#0001 0.0 0.0 777.0 888.0 NaN
#0002 403.0 430.0 320.0 55.0 NaN
#0003 304.0 403.0 403.0 403.0 NaN
#0004 403.0 206.0 NaN 312.0 NaN
#0005 394.0 493.0 NaN 403.0 NaN


Actually df.shift(-1,axis=1) should work but there is bug in the code:



print(df.shift(-1,axis=1))
A1 A2 A3 A4 A5
#0001 777.0 0.0 888.0 NaN NaN
#0002 320.0 430.0 55.0 NaN NaN
#0003 403.0 403.0 403.0 NaN NaN
#0004 NaN 206.0 312.0 NaN NaN
#0005 NaN 493.0 403.0 NaN NaN





share|improve this answer





















  • 1





    Simply df.shift(-1, axis=1) shifts on column.

    – rushinstuffin
    Nov 15 '18 at 4:55






  • 1





    @rushinstuffin It doesn't work, there is bug in shift code.

    – Sandeep Kadapa
    Nov 15 '18 at 4:57






  • 1





    Oh, thanks. I didn't realize that. It seems to be because of the NaN values? Without those it seems to work fine.

    – rushinstuffin
    Nov 15 '18 at 5:06



















0














Try this simple loop:



for i in range(len(df.columns)-1): 
df.iloc[:,i] = df.iloc[:,i+1]
# for last column:
df[i+1] = np.nan


Output:



        A1   A2     A3   A4  A5
#0001 0 0 777.0 888 NaN
#0002 403 430 320.0 55 NaN
#0003 304 403 403.0 403 NaN
#0004 403 206 NaN 312 NaN
#0005 394 493 NaN 403 NaN





share|improve this answer
































    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    Use double transpose with shift:



    df = df.T.shift(-1,axis=0).T

    print(df)

    A1 A2 A3 A4 A5
    #0001 0.0 0.0 777.0 888.0 NaN
    #0002 403.0 430.0 320.0 55.0 NaN
    #0003 304.0 403.0 403.0 403.0 NaN
    #0004 403.0 206.0 NaN 312.0 NaN
    #0005 394.0 493.0 NaN 403.0 NaN


    Actually df.shift(-1,axis=1) should work but there is bug in the code:



    print(df.shift(-1,axis=1))
    A1 A2 A3 A4 A5
    #0001 777.0 0.0 888.0 NaN NaN
    #0002 320.0 430.0 55.0 NaN NaN
    #0003 403.0 403.0 403.0 NaN NaN
    #0004 NaN 206.0 312.0 NaN NaN
    #0005 NaN 493.0 403.0 NaN NaN





    share|improve this answer





















    • 1





      Simply df.shift(-1, axis=1) shifts on column.

      – rushinstuffin
      Nov 15 '18 at 4:55






    • 1





      @rushinstuffin It doesn't work, there is bug in shift code.

      – Sandeep Kadapa
      Nov 15 '18 at 4:57






    • 1





      Oh, thanks. I didn't realize that. It seems to be because of the NaN values? Without those it seems to work fine.

      – rushinstuffin
      Nov 15 '18 at 5:06
















    0














    Use double transpose with shift:



    df = df.T.shift(-1,axis=0).T

    print(df)

    A1 A2 A3 A4 A5
    #0001 0.0 0.0 777.0 888.0 NaN
    #0002 403.0 430.0 320.0 55.0 NaN
    #0003 304.0 403.0 403.0 403.0 NaN
    #0004 403.0 206.0 NaN 312.0 NaN
    #0005 394.0 493.0 NaN 403.0 NaN


    Actually df.shift(-1,axis=1) should work but there is bug in the code:



    print(df.shift(-1,axis=1))
    A1 A2 A3 A4 A5
    #0001 777.0 0.0 888.0 NaN NaN
    #0002 320.0 430.0 55.0 NaN NaN
    #0003 403.0 403.0 403.0 NaN NaN
    #0004 NaN 206.0 312.0 NaN NaN
    #0005 NaN 493.0 403.0 NaN NaN





    share|improve this answer





















    • 1





      Simply df.shift(-1, axis=1) shifts on column.

      – rushinstuffin
      Nov 15 '18 at 4:55






    • 1





      @rushinstuffin It doesn't work, there is bug in shift code.

      – Sandeep Kadapa
      Nov 15 '18 at 4:57






    • 1





      Oh, thanks. I didn't realize that. It seems to be because of the NaN values? Without those it seems to work fine.

      – rushinstuffin
      Nov 15 '18 at 5:06














    0












    0








    0







    Use double transpose with shift:



    df = df.T.shift(-1,axis=0).T

    print(df)

    A1 A2 A3 A4 A5
    #0001 0.0 0.0 777.0 888.0 NaN
    #0002 403.0 430.0 320.0 55.0 NaN
    #0003 304.0 403.0 403.0 403.0 NaN
    #0004 403.0 206.0 NaN 312.0 NaN
    #0005 394.0 493.0 NaN 403.0 NaN


    Actually df.shift(-1,axis=1) should work but there is bug in the code:



    print(df.shift(-1,axis=1))
    A1 A2 A3 A4 A5
    #0001 777.0 0.0 888.0 NaN NaN
    #0002 320.0 430.0 55.0 NaN NaN
    #0003 403.0 403.0 403.0 NaN NaN
    #0004 NaN 206.0 312.0 NaN NaN
    #0005 NaN 493.0 403.0 NaN NaN





    share|improve this answer















    Use double transpose with shift:



    df = df.T.shift(-1,axis=0).T

    print(df)

    A1 A2 A3 A4 A5
    #0001 0.0 0.0 777.0 888.0 NaN
    #0002 403.0 430.0 320.0 55.0 NaN
    #0003 304.0 403.0 403.0 403.0 NaN
    #0004 403.0 206.0 NaN 312.0 NaN
    #0005 394.0 493.0 NaN 403.0 NaN


    Actually df.shift(-1,axis=1) should work but there is bug in the code:



    print(df.shift(-1,axis=1))
    A1 A2 A3 A4 A5
    #0001 777.0 0.0 888.0 NaN NaN
    #0002 320.0 430.0 55.0 NaN NaN
    #0003 403.0 403.0 403.0 NaN NaN
    #0004 NaN 206.0 312.0 NaN NaN
    #0005 NaN 493.0 403.0 NaN NaN






    share|improve this answer














    share|improve this answer



    share|improve this answer








    edited Nov 15 '18 at 4:56

























    answered Nov 15 '18 at 4:46









    Sandeep KadapaSandeep Kadapa

    7,218830




    7,218830








    • 1





      Simply df.shift(-1, axis=1) shifts on column.

      – rushinstuffin
      Nov 15 '18 at 4:55






    • 1





      @rushinstuffin It doesn't work, there is bug in shift code.

      – Sandeep Kadapa
      Nov 15 '18 at 4:57






    • 1





      Oh, thanks. I didn't realize that. It seems to be because of the NaN values? Without those it seems to work fine.

      – rushinstuffin
      Nov 15 '18 at 5:06














    • 1





      Simply df.shift(-1, axis=1) shifts on column.

      – rushinstuffin
      Nov 15 '18 at 4:55






    • 1





      @rushinstuffin It doesn't work, there is bug in shift code.

      – Sandeep Kadapa
      Nov 15 '18 at 4:57






    • 1





      Oh, thanks. I didn't realize that. It seems to be because of the NaN values? Without those it seems to work fine.

      – rushinstuffin
      Nov 15 '18 at 5:06








    1




    1





    Simply df.shift(-1, axis=1) shifts on column.

    – rushinstuffin
    Nov 15 '18 at 4:55





    Simply df.shift(-1, axis=1) shifts on column.

    – rushinstuffin
    Nov 15 '18 at 4:55




    1




    1





    @rushinstuffin It doesn't work, there is bug in shift code.

    – Sandeep Kadapa
    Nov 15 '18 at 4:57





    @rushinstuffin It doesn't work, there is bug in shift code.

    – Sandeep Kadapa
    Nov 15 '18 at 4:57




    1




    1





    Oh, thanks. I didn't realize that. It seems to be because of the NaN values? Without those it seems to work fine.

    – rushinstuffin
    Nov 15 '18 at 5:06





    Oh, thanks. I didn't realize that. It seems to be because of the NaN values? Without those it seems to work fine.

    – rushinstuffin
    Nov 15 '18 at 5:06













    0














    Try this simple loop:



    for i in range(len(df.columns)-1): 
    df.iloc[:,i] = df.iloc[:,i+1]
    # for last column:
    df[i+1] = np.nan


    Output:



            A1   A2     A3   A4  A5
    #0001 0 0 777.0 888 NaN
    #0002 403 430 320.0 55 NaN
    #0003 304 403 403.0 403 NaN
    #0004 403 206 NaN 312 NaN
    #0005 394 493 NaN 403 NaN





    share|improve this answer






























      0














      Try this simple loop:



      for i in range(len(df.columns)-1): 
      df.iloc[:,i] = df.iloc[:,i+1]
      # for last column:
      df[i+1] = np.nan


      Output:



              A1   A2     A3   A4  A5
      #0001 0 0 777.0 888 NaN
      #0002 403 430 320.0 55 NaN
      #0003 304 403 403.0 403 NaN
      #0004 403 206 NaN 312 NaN
      #0005 394 493 NaN 403 NaN





      share|improve this answer




























        0












        0








        0







        Try this simple loop:



        for i in range(len(df.columns)-1): 
        df.iloc[:,i] = df.iloc[:,i+1]
        # for last column:
        df[i+1] = np.nan


        Output:



                A1   A2     A3   A4  A5
        #0001 0 0 777.0 888 NaN
        #0002 403 430 320.0 55 NaN
        #0003 304 403 403.0 403 NaN
        #0004 403 206 NaN 312 NaN
        #0005 394 493 NaN 403 NaN





        share|improve this answer















        Try this simple loop:



        for i in range(len(df.columns)-1): 
        df.iloc[:,i] = df.iloc[:,i+1]
        # for last column:
        df[i+1] = np.nan


        Output:



                A1   A2     A3   A4  A5
        #0001 0 0 777.0 888 NaN
        #0002 403 430 320.0 55 NaN
        #0003 304 403 403.0 403 NaN
        #0004 403 206 NaN 312 NaN
        #0005 394 493 NaN 403 NaN






        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited Nov 15 '18 at 6:41

























        answered Nov 15 '18 at 4:56









        rnsornso

        11.9k1441101




        11.9k1441101















            Popular posts from this blog

            Florida Star v. B. J. F.

            Danny Elfman

            Lugert, Oklahoma