Seagrass









Thalassia testudinum seagrass bed


Seagrasses are flowering plants (angiosperms) which grow in marine environments. There are 60 species of fully marine seagrasses which belong to four families (Posidoniaceae, Zosteraceae, Hydrocharitaceae and Cymodoceaceae), all in the order Alismatales (in the class of monocotyledons).[1] Seagrasses evolved from terrestrial plants which migrated back into the ocean about 75 to 100 million years ago.[2][3]




Contents






  • 1 Seagrass


  • 2 Taxonomy


  • 3 Ecosystem services


  • 4 Relation to humans


  • 5 Disturbances and threats


  • 6 Restoration


  • 7 See also


  • 8 References


  • 9 Further references


  • 10 External links





Seagrass





White-spotted puffers are often found in seagrass areas.


The name seagrass stems from the many species whose leaves are long and narrow, who grow by rhizome extension and often spread across large "meadows", which resemble grassland: many species superficially resemble terrestrial grasses of the family Poaceae.


Like all autotrophic plants, seagrasses photosynthesize, in the submerged photic zone, and most occur in shallow and sheltered coastal waters anchored in sand or mud bottoms. Most species undergo submarine pollination and complete their life cycle underwater.


Seagrasses beds/meadows can be either monospecific (made up of a single species) or in mixed beds. In temperate areas, usually one or a few species dominate (like the eelgrass Zostera marina in the North Atlantic), whereas tropical beds usually are more diverse, with up to thirteen species recorded in the Philippines.


Seagrass beds are diverse and productive ecosystems, and can harbor hundreds of associated species from all phyla, for example juvenile and adult fish, epiphytic and free-living macroalgae and microalgae, mollusks, bristle worms, and nematodes. Few species were originally considered to feed directly on seagrass leaves (partly because of their low nutritional content), but scientific reviews and improved working methods have shown that seagrass herbivory is an important link in the food chain, feeding hundreds of species, including green turtles, dugongs, manatees, fish, geese, swans, sea urchins and crabs. Some fish species that visit/feed on seagrasses raise their young in adjacent mangroves or coral reefs.


Seagrasses trap sediment and slow down water movement, causing suspended sediment to settle out. Trapping sediment benefits coral by reducing sediment loads, improving photosynthesis for both coral and seagrass.[4]



Taxonomy

















































































Family
Image
Genera
Description

Zosteraceae
The family Zosteraceae, also known as the seagrass family, includes two genera containing 22 marine species. It is found in temperate and subtropical coastal waters, with the highest diversity around Korea and Japan.

Species subtotal:  



Tectura palacea 3.jpg


Phyllospadix

6 species  

Zostera.jpg


Zostera

16 species  

Hydrocharitaceae
The family Hydrocharitaceae, also known as tape-grasses, include Canadian waterweed and frogbit. The family includes both fresh and marine aquatics, although of the seventeen species currently recognised only three are marine.[5] They are found throughout the world in a wide variety of habitats, but are primarily tropical.

Species subtotal:  



Enhalus acoroides01.jpg


Enhalus

1 species  

Johnsons seagrass bed.jpg


Halophila

19 species  

Thalassia hemprichii.jpg


Thalassia

2 species  

Posidoniaceae
The family Posidoniaceae contains a single genus with two to nine marine species found in the seas of the Mediterranean and around the south coast of Australia.

Species subtotal: 2 to 9  



Posidonia 2 Alberto Romeo.jpg


Posidonia

2 to 9 species  

Cymodoceaceae
The family Cymodoceaceae, also known as the manatee-grass family, includes only marine species.[5] Some taxonomists do not recognize this family.

Species subtotal:  



Amphibolis antarctica 1859.jpg


Amphibolis

2 species  

Cymodocea.JPG


Cymodocea

4 species  

Halodule wrightii.jpg


Halodule

6 species  

Syringodium isoetifolium et Acropora sp..jpg


Syringodium

2 species  

Thalassodendron ciliatum.jpg


Thalassodendron

3 species  

Total species:   


Ecosystem services




Seagrass bed with several echinoids, Grahams Harbour, San Salvador Island, Bahamas




Seagrass bed with dense turtle grass (Thalassia testudinum) and an immature queen conch (Eustrombus gigas), Rice Bay, San Salvador Island, Bahamas


Although often overlooked, seagrasses provide coastal zones with a number of ecosystem goods and services. Seagrasses are considered ecosystem engineers.[6][3][2] This means that the plants alter the ecosystem around them. This adjusting occurs in both physical and chemical forms. Many seagrass species produce an extensive underground network of roots and rhizome which stabilizes sediment and reduces coastal erosion.[7] This system also assists in oxygenating the sediment, providing a hospitable environment for sediment-dwelling organisms.[8] Seagrasses also enhance water quality by stabilizing heavy metals, pollutants, and excess nutrients[9][3][2] The long blades of seagrasses slow the movement of water which reduces wave energy and offers further protection against coastal erosion and storm surge. Furthermore, because seagrasses are underwater plants, they produce significant amounts of oxygen which oxygenate the water column. These meadows account for more than 10% of the ocean’s total carbon storage. Per hectare, it holds twice as much carbon dioxide as rain forests and can sequester about 27.4 million tons of CO2 annually[10][citation needed]. The storage of carbon is an essential ecosystem service as we move into a period of elevated atmospheric carbon levels. However, some climate change models suggest that some seagrasses will go extinct – Posidonia oceanica is expected to go extinct, or nearly so, by 2050.


Seagrass meadows also provide physical habitat in areas which would otherwise be bare of any vegetation. Due to this three dimensional structure in the water column, many species occupy seagrass habitats for shelter and foraging. It is estimated that 17 species of coral reef fish spend their entire juvenile life stage solely on seagrass flats.[11] These habitats also act as a nursery grounds for commercially and recreationally valued fishery species, including the gag grouper (Mycteroperca microlepis), red drum, common snook, and many others.[12][13] Some fish species utilize seagrass meadows and variaus stages of life cycle. In a recent publication, Dr. Ross Boucek and colleagues discovered that two highly sought after flats fish, the common snook and spotted sea trout provide essential foraging habitat during reproduction.[14] Sexual reproduction is extremely energetically expensive to be completed with stored energy, therefore, they require seagrass meadows in close proximity to complete reproduction.[14] Furthermore, many commercially important invertebrates also reside in seagrass habitats including bay scallops (Argopecten irradians), the horseshoe crab, and shrimp. Charismatic fauna can also be seen visiting the seagrass habitats. These species include West Indian manatee, green sea turtles, and various species of sharks. The high diversity of marine organisms which can be found on seagrass habitats promotes them as tourism attraction and a significant source of income for many coastal economies in along the Gulf of Mexico and in the Caribbean.



Relation to humans


Historically, seagrasses were collected as fertilizer for sandy soil. This was an important use in the Ria de Aveiro, Portugal, where the plants collected were known as moliço.


In the early 20th century, in France and, to a lesser extent, the Channel Islands, dried seagrasses were used as a mattress (paillasse) filling - such mattresses were in high demand by French forces during World War I. It was also used for bandages and other purposes.


In February 2017, researchers found that seagrass meadows may be able to remove various pathogens from seawater. On small islands without wastewater treatment facilities in central Indonesia, levels of pathogenic marine bacteria – such as Enterococcus – that affect humans, fishes and invertebrates were reduced by 50 percent when seagrass meadows were present, compared to paired sites without seagrass,[15] although this could be a detriment to their own survival.[16]



Disturbances and threats


Natural disturbances, such as grazing, storms, ice-scouring and desiccation, are an inherent part of seagrass ecosystem dynamics. Seagrasses display a high degree of phenotypic plasticity, adapting rapidly to changing environmental conditions.


Seagrasses are in global decline, with some 30,000 km2 (12,000 sq mi) lost during recent decades. The main cause is human disturbance, most notably eutrophication, mechanical destruction of habitat, and overfishing. Excessive input of nutrients (nitrogen, phosphorus) is directly toxic to seagrasses, but most importantly, it stimulates the growth of epiphytic and free-floating macro- and micro-algae. This weakens the sunlight, reducing the photosynthesis that nourishes the seagrass and the primary production results.


Decaying seagrass leaves and algae fuels increasing algal blooms, resulting in a positive feedback. This can cause a complete regime shift from seagrass to algal dominance. Accumulating evidence also suggests that overfishing of top predators (large predatory fish) could indirectly increase algal growth by reducing grazing control performed by mesograzers, such as crustaceans and gastropods, through a trophic cascade.


Macro algal blooms cause the decline and eradication of seagrasses. Known as nuisance species, macroalgae grow in filamentous and sheet-like forms and form thick unattached mats over seagrass, occurring as epiphytes on seagrass leaves. Eutrophication leads to the forming of a bloom, causing the attenuation of light in the water column, which eventually leads to anoxic conditions for the seagrass and organisms living in/around the plant(s). In addition to the direct blockage of light to the plant, benthic macroalgae have low carbon/nitrogen content, causing their decomposition to stimulate bacterial activity, leading to sediment resuspension, an increase in water turbidity and further light attenuation.[17][18]


When humans drive motor boats over shallow seagrass areas, sometimes the propeller blade can damage the seagrass.


The most-used methods to protect and restore seagrass meadows include nutrient and pollution reduction, marine protected areas and restoration using seagrass transplantation. Seagrass is not seen as resilient to the impacts of future environmental change.[19]



Restoration


In various locations, communities are attempting to restore seagress beds that were lost to human action, including in the US states of Virginia,[20] Florida[21] and Hawaii.[22] Such reintroductions have been shown to improve ecosystem services.[23]



See also



  • Alismatales

  • Blue carbon

  • Salt marsh

  • Mangrove



References





  1. ^ Tomlinson and Vargo (1966). "On the morphology and anatomy of turtle grass, Thalassia testudinum (Hydrocharitaceae). I. Vegetative Morphology". Bulletin of Marine Science. 16: 748–761..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ abc Orth; et al. (2006). "A global crisis for seagrass ecosystems". BioScience. 56 (12): 987–996. doi:10.1641/0006-3568(2006)56[987:AGCFSE]2.0.CO;2. hdl:10261/88476.


  3. ^ abc Papenbrock, J (2012). "Highlights in seagrass' phylogeny, physiology, and metabolism: what makes them so species?". International Scholarly Research Network: 1–15.


  4. ^ Seagrass-Watch: What is seagrass? Retrieved 2012-11-16.


  5. ^ ab Waycott, Michelle; McMahon, Kathryn; Lavery, Paul (2014). A Guide to Southern Temperate Seagrasses. CSIRO Publishing. ISBN 9781486300150.


  6. ^ Jones; et al. (1994). "Organisms as ecosystem engineers". Oikos. 69 (3): 373–386. doi:10.2307/3545850. JSTOR 3545850.


  7. ^ Grey and Moffler (1987). "Flowering of the seagrass Thalassia testudinum (Hydrocharitacea) in the Tampa Bay, Florida area". Aquatic Botany. 5: 251–259. doi:10.1016/0304-3770(78)90068-2.


  8. ^ Jones; et al. (1994). "Organisms as ecosystem engineers". Oikos. 69 (3): 373–386. doi:10.2307/3545850. JSTOR 3545850.


  9. ^ Darnell and Dunton (2016). "Reproductive phenology of the subtropical Thalassia testudinum (turtle grass) and Halodule wrightii (shoal grass) in the northwest Gulf of Mexico". Botanica Mariana. 59 (6): 473–483.


  10. ^ Macreadie; et al. (2013). "Quantifying and modelling the carbon sequestration capacity of seagrass meadows". Marine Pollution Bulletin.


  11. ^ Nagelkerken; et al. (2002). "How important are mangroves and seagrass beds for coral- reef fish? The nursery hypothesis tested on an island scale". Marine Ecology Progress Series. 244: 299–305. doi:10.3354/meps244299.


  12. ^ Nordlund, LM; Unsworth, RKF; Gullstrom, M; Cullen-Unsworth, LC (2018). "Global significance of seagrass fishery activity". Fish and Fisheries. 19 (3): 399–412. doi:10.1111/faf.12259.


  13. ^ Unsworth, RKF; Nordlund, LM; Cullen-Unsworth, LC (2019). "Seagrass meadows support global fisheries production". Conserv Lett. e12566: e12566. doi:10.1111/conl.12566.


  14. ^ ab Boucek RE, Leone E, Bickford J, Walters-Burnsed S, Lowerre-Barbieri S. More than just a spawning location: Examining fine scale s[ace use of two estuarine fish species at a spawning aggregation site. 2017. Frontiers in Marine Science. 4:1-9.


  15. ^ Byington, Cara. "New Science Shows Seagrass Meadows Suppress Pathogens". Nature.org. NatureNet Fellows for Cool Green Science. Retrieved 17 February 2017.


  16. ^ Jones, BJ; Cullen-Unsworth, LC; Unsworth, RKF (2018). "Tracking Nitrogen Source Using δ15N Reveals Human and Agricultural Drivers of Seagrass Degradation across the British Isles". Frontiers in Plant Science. 9. doi:10.3389/fpls.2018.00133.


  17. ^ McGlathery, KJ (2001). "Macroalgal blooms contribute to the decline of seagrass in nutrient‐enriched coastal waters" (PDF). Journal of Phycology. 37 (4): 453–456. doi:10.1046/j.1529-8817.2001.037004453.x.


  18. ^ Fox SE, YS Olsen and AC Spivak (2010) "Effects of bottom-up and top-down controls and climate change on estuarine macrophyte communities and the ecosystem services they provide" In: PF Kemp (Ed) Eco-DAS Symposium Proceedings, ALSO, Chapter 8: 129–145.


  19. ^ Unsworth et al. 2015 "A framework for the resilience of seagrass ecosystems" Marine Pollution Bulletin'


  20. ^ "Eelgrass Restoration | The Nature Conservancy in Virginia". www.nature.org. Retrieved 2018-08-06.


  21. ^ "Seagrass Restoration". myfwc.com. Retrieved 2018-08-06.


  22. ^ "Seagrass Restoration Initiative – Malama Maunalua". www.malamamaunalua.org. Retrieved 2018-08-06.


  23. ^ van Katwijk, Marieke M.; Thorhaug, Anitra; Marbà, Núria; Orth, Robert J.; Duarte, Carlos M.; Kendrick, Gary A.; Althuizen, Inge H. J.; Balestri, Elena; Bernard, Guillaume (2015-11-25). "Global analysis of seagrass restoration: the importance of large-scale planting". Journal of Applied Ecology. 53 (2): 567–578. doi:10.1111/1365-2664.12562. ISSN 0021-8901.




Further references


.mw-parser-output .refbegin{font-size:90%;margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{list-style-type:none;margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li,.mw-parser-output .refbegin-hanging-indents>dl>dd{margin-left:0;padding-left:3.2em;text-indent:-3.2em;list-style:none}.mw-parser-output .refbegin-100{font-size:100%}


  • den Hartog, C. 1970. The Sea-grasses of the World. Verhandl. der Koninklijke Nederlandse Akademie van Wetenschappen, Afd. Natuurkunde, No. 59(1).

  • Duarte, Carlos M. and Carina L. Chiscano “Seagrass biomass and production: a reassessment” Aquatic Botany Volume 65, Issues 1-4, November 1999, Pages 159-174.

  • Green, E.P. & Short, F.T.(eds). 2003. World Atlas of Seagrasses. University of California Press, Berkeley, CA. 298 pp.

  • Hemminga, M.A. & Duarte, C. 2000. Seagrass Ecology. Cambridge University Press, Cambridge. 298 pp.

  • Hogarth, Peter The Biology of Mangroves and Seagrasses (Oxford University Press, 2007)

  • Larkum, Anthony W.D., Robert J. Orth, and Carlos M. Duarte (Editors) Seagrasses: Biology, Ecology and Conservation (Springer, 2006)

  • Orth, Robert J. et al. "A Global Crisis for Seagrass Ecosystems" BioScience December 2006 / Vol. 56 No. 12, Pages 987-996.

  • Short, F.T. & Coles, R.G.(eds). 2001. Global Seagrass Research Methods. Elsevier Science, Amsterdam. 473 pp.

  • A.W.D. Larkum, R.J. Orth, and C.M. Duarte (eds). Seagrass Biology: A Treatise. CRC Press, Boca Raton, FL, in press.

  • A. Schwartz; M. Morrison; I. Hawes; J. Halliday. 2006. Physical and biological characteristics of a rare marine habitat: sub-tidal seagrass beds of offshore islands. Science for Conservation 269. 39 pp. [1]

  • Waycott, M, McMahon, K, & Lavery, P 2014, A guide to southern temperate seagrasses, CSIRO Publishing, Melbourne




External links




  • Cullen-Unsworth, Leanne C.; Unsworth, Richard (2018-08-03). "A call for seagrass protection". Science. 361 (6401): 446–448. doi:10.1126/science.aat7318 (inactive 2019-03-14). ISSN 0036-8075. PMID 30072524.

  • Project Seagrass - Charity advancing the conservation of seagrass through education, influence, research and action

  • SeagrassSpotter - Citizen Science project raising awaress for seagrass meadows and mapping their locations


  • Seagrass and Seagrass Beds overview from the Smithsonian Ocean Portal

  • Nature Geoscience article describing the locations of the seagrass meadows around the world

  • Seagrass-Watch - the largest scientific, non-destructive, seagrass assessment and monitoring program in the world

  • Seagrass Ecosystem Research Group at Swansea University - Inter-disciplinary marine research for conservation

  • Restore-A-Scar - a non-profit campaign to restore seagrass meadows damaged by boat props

  • SeagrassNet - global seagrass monitoring program

  • The Seagrass Fund at The Ocean Foundation

  • Taxonomy of seagrasses

  • World Seagrass Association

  • SeagrassLI

  • Seagrass Science and Management in the South China Sea and Gulf of Thailand


  • Marine Ecology (December 2006) - special issue on seagrasses

  • Cambodian Seagrasses

  • Seagrass Productivity - COST Action ES0906

  • Fisheries Western Australia - Seagrass Fact Sheet









Popular posts from this blog

Florida Star v. B. J. F.

Danny Elfman

Lugert, Oklahoma