Kernel in a logistic regression model LogisticRegression scikit-learn sklearn
How can I use a kernel in a logistic regression model using the sklearn library?
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
y_pred = logreg.predict(X_test)
print(y_pred)
print(confusion_matrix(y_test,y_pred))
print(classification_report(y_test,y_pred))
predicted= logreg.predict(predict)
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
machine-learning scikit-learn kernel svm logistic-regression
add a comment |
How can I use a kernel in a logistic regression model using the sklearn library?
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
y_pred = logreg.predict(X_test)
print(y_pred)
print(confusion_matrix(y_test,y_pred))
print(classification_report(y_test,y_pred))
predicted= logreg.predict(predict)
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
machine-learning scikit-learn kernel svm logistic-regression
hope my answer helps.
– makaros
Nov 8 '18 at 12:59
add a comment |
How can I use a kernel in a logistic regression model using the sklearn library?
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
y_pred = logreg.predict(X_test)
print(y_pred)
print(confusion_matrix(y_test,y_pred))
print(classification_report(y_test,y_pred))
predicted= logreg.predict(predict)
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
machine-learning scikit-learn kernel svm logistic-regression
How can I use a kernel in a logistic regression model using the sklearn library?
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
y_pred = logreg.predict(X_test)
print(y_pred)
print(confusion_matrix(y_test,y_pred))
print(classification_report(y_test,y_pred))
predicted= logreg.predict(predict)
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
machine-learning scikit-learn kernel svm logistic-regression
machine-learning scikit-learn kernel svm logistic-regression
edited Nov 15 '18 at 23:23
makaros
6,44622445
6,44622445
asked Nov 7 '18 at 22:54
RubiksRubiks
19113
19113
hope my answer helps.
– makaros
Nov 8 '18 at 12:59
add a comment |
hope my answer helps.
– makaros
Nov 8 '18 at 12:59
hope my answer helps.
– makaros
Nov 8 '18 at 12:59
hope my answer helps.
– makaros
Nov 8 '18 at 12:59
add a comment |
1 Answer
1
active
oldest
votes
Very nice question but scikit-learn
currently does not support neither kernel logistic regression nor the ANOVA kernel.
You can implement it though.
Example 1 for the ANOVA kernel:
import numpy as np
from sklearn.metrics.pairwise import check_pairwise_arrays
from scipy.linalg import cholesky
from sklearn.linear_model import LogisticRegression
def anova_kernel(X, Y=None, gamma=None, p=1):
X, Y = check_pairwise_arrays(X, Y)
if gamma is None:
gamma = 1. / X.shape[1]
diff = X[:, None, :] - Y[None, :, :]
diff **= 2
diff *= -gamma
np.exp(diff, out=diff)
K = diff.sum(axis=2)
K **= p
return K
# Kernel matrix based on X matrix of all data points
K = anova_kernel(X)
R = cholesky(K, lower=False)
# Define the model
clf = LogisticRegression()
# Here, I assume that you have splitted the data and here, traina re the indices for the training set
clf.fit(R[train], y_train)
preds = clf.predict(R[test])¨
Example 2 for Nyström:
from sklearn.kernel_approximation import Nystroem
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
K_train = anova_kernel(X_train)
clf = Pipeline([
('nys', Nystroem(kernel='precomputed', n_components=100)),
('lr', LogisticRegression())])
clf.fit(K_train, y_train)
K_test = anova_kernel(X_test, X_train)
preds = clf.predict(K_test)
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53199141%2fkernel-in-a-logistic-regression-model-logisticregression-scikit-learn-sklearn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Very nice question but scikit-learn
currently does not support neither kernel logistic regression nor the ANOVA kernel.
You can implement it though.
Example 1 for the ANOVA kernel:
import numpy as np
from sklearn.metrics.pairwise import check_pairwise_arrays
from scipy.linalg import cholesky
from sklearn.linear_model import LogisticRegression
def anova_kernel(X, Y=None, gamma=None, p=1):
X, Y = check_pairwise_arrays(X, Y)
if gamma is None:
gamma = 1. / X.shape[1]
diff = X[:, None, :] - Y[None, :, :]
diff **= 2
diff *= -gamma
np.exp(diff, out=diff)
K = diff.sum(axis=2)
K **= p
return K
# Kernel matrix based on X matrix of all data points
K = anova_kernel(X)
R = cholesky(K, lower=False)
# Define the model
clf = LogisticRegression()
# Here, I assume that you have splitted the data and here, traina re the indices for the training set
clf.fit(R[train], y_train)
preds = clf.predict(R[test])¨
Example 2 for Nyström:
from sklearn.kernel_approximation import Nystroem
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
K_train = anova_kernel(X_train)
clf = Pipeline([
('nys', Nystroem(kernel='precomputed', n_components=100)),
('lr', LogisticRegression())])
clf.fit(K_train, y_train)
K_test = anova_kernel(X_test, X_train)
preds = clf.predict(K_test)
add a comment |
Very nice question but scikit-learn
currently does not support neither kernel logistic regression nor the ANOVA kernel.
You can implement it though.
Example 1 for the ANOVA kernel:
import numpy as np
from sklearn.metrics.pairwise import check_pairwise_arrays
from scipy.linalg import cholesky
from sklearn.linear_model import LogisticRegression
def anova_kernel(X, Y=None, gamma=None, p=1):
X, Y = check_pairwise_arrays(X, Y)
if gamma is None:
gamma = 1. / X.shape[1]
diff = X[:, None, :] - Y[None, :, :]
diff **= 2
diff *= -gamma
np.exp(diff, out=diff)
K = diff.sum(axis=2)
K **= p
return K
# Kernel matrix based on X matrix of all data points
K = anova_kernel(X)
R = cholesky(K, lower=False)
# Define the model
clf = LogisticRegression()
# Here, I assume that you have splitted the data and here, traina re the indices for the training set
clf.fit(R[train], y_train)
preds = clf.predict(R[test])¨
Example 2 for Nyström:
from sklearn.kernel_approximation import Nystroem
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
K_train = anova_kernel(X_train)
clf = Pipeline([
('nys', Nystroem(kernel='precomputed', n_components=100)),
('lr', LogisticRegression())])
clf.fit(K_train, y_train)
K_test = anova_kernel(X_test, X_train)
preds = clf.predict(K_test)
add a comment |
Very nice question but scikit-learn
currently does not support neither kernel logistic regression nor the ANOVA kernel.
You can implement it though.
Example 1 for the ANOVA kernel:
import numpy as np
from sklearn.metrics.pairwise import check_pairwise_arrays
from scipy.linalg import cholesky
from sklearn.linear_model import LogisticRegression
def anova_kernel(X, Y=None, gamma=None, p=1):
X, Y = check_pairwise_arrays(X, Y)
if gamma is None:
gamma = 1. / X.shape[1]
diff = X[:, None, :] - Y[None, :, :]
diff **= 2
diff *= -gamma
np.exp(diff, out=diff)
K = diff.sum(axis=2)
K **= p
return K
# Kernel matrix based on X matrix of all data points
K = anova_kernel(X)
R = cholesky(K, lower=False)
# Define the model
clf = LogisticRegression()
# Here, I assume that you have splitted the data and here, traina re the indices for the training set
clf.fit(R[train], y_train)
preds = clf.predict(R[test])¨
Example 2 for Nyström:
from sklearn.kernel_approximation import Nystroem
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
K_train = anova_kernel(X_train)
clf = Pipeline([
('nys', Nystroem(kernel='precomputed', n_components=100)),
('lr', LogisticRegression())])
clf.fit(K_train, y_train)
K_test = anova_kernel(X_test, X_train)
preds = clf.predict(K_test)
Very nice question but scikit-learn
currently does not support neither kernel logistic regression nor the ANOVA kernel.
You can implement it though.
Example 1 for the ANOVA kernel:
import numpy as np
from sklearn.metrics.pairwise import check_pairwise_arrays
from scipy.linalg import cholesky
from sklearn.linear_model import LogisticRegression
def anova_kernel(X, Y=None, gamma=None, p=1):
X, Y = check_pairwise_arrays(X, Y)
if gamma is None:
gamma = 1. / X.shape[1]
diff = X[:, None, :] - Y[None, :, :]
diff **= 2
diff *= -gamma
np.exp(diff, out=diff)
K = diff.sum(axis=2)
K **= p
return K
# Kernel matrix based on X matrix of all data points
K = anova_kernel(X)
R = cholesky(K, lower=False)
# Define the model
clf = LogisticRegression()
# Here, I assume that you have splitted the data and here, traina re the indices for the training set
clf.fit(R[train], y_train)
preds = clf.predict(R[test])¨
Example 2 for Nyström:
from sklearn.kernel_approximation import Nystroem
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
K_train = anova_kernel(X_train)
clf = Pipeline([
('nys', Nystroem(kernel='precomputed', n_components=100)),
('lr', LogisticRegression())])
clf.fit(K_train, y_train)
K_test = anova_kernel(X_test, X_train)
preds = clf.predict(K_test)
edited Nov 9 '18 at 8:09
answered Nov 8 '18 at 12:57
makarosmakaros
6,44622445
6,44622445
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53199141%2fkernel-in-a-logistic-regression-model-logisticregression-scikit-learn-sklearn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
hope my answer helps.
– makaros
Nov 8 '18 at 12:59