How to prevent overfitting in Keras sequential model?












0















I am already adding dropout regularization. I am trying to build a multiclass text classification multilayer perceptron model.
My model:



model = Sequential([
Dropout(rate=0.2, input_shape=features),
Dense(units=64, activation='relu'),
Dropout(rate=0.2),
Dense(units=64, activation='relu'),
Dropout(rate=0.2),
Dense(units=16, activation='softmax')])


My model.summary():



_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dropout_1 (Dropout) (None, 20000) 0
_________________________________________________________________
dense_1 (Dense) (None, 64) 1280064
_________________________________________________________________
dropout_2 (Dropout) (None, 64) 0
_________________________________________________________________
dense_2 (Dense) (None, 64) 4160
_________________________________________________________________
dropout_3 (Dropout) (None, 64) 0
_________________________________________________________________
dense_3 (Dense) (None, 16) 1040
=================================================================
Total params: 1,285,264
Trainable params: 1,285,264
Non-trainable params: 0
_________________________________________________________________
None
Train on 6940 samples, validate on 1735 samples


I am getting:



Epoch 16/1000
- 4s - loss: 0.4926 - acc: 0.8719 - val_loss: 1.2640 - val_acc: 0.6640
Validation accuracy: 0.6639769498140736, loss: 1.2639631692545559


The validation accuracy is ~20% less than the accuracy, and the validation loss is way higher than the training loss.



I am already using dropout regularization, and using epochs = 1000, batch size = 512 and early stopping on val_loss.



Any suggestions?










share|improve this question

























  • Could you please also add a code how do you run model.fit( ... ).

    – Danylo Baibak
    Nov 15 '18 at 7:29











  • Would also need how you are doing the preprocessing on training and validation data if any

    – Vivek Kumar
    Nov 15 '18 at 8:09











  • @DanyloBaibak As I said, epochs = 1000, batch size = 512, verbose = 2, rest are just my local variables.

    – Ahmed El Gohary
    Nov 15 '18 at 22:49











  • @VivekKumar, tokenized the text as unigrams and bigrams and vectorizing using tf-idf, then i SelectKBest 20,000 features

    – Ahmed El Gohary
    Nov 15 '18 at 22:50











  • @AhmedElGohary, do you have some validation dataset? The easiest way is model.fit( ...., validation_split=0.1)

    – Danylo Baibak
    Nov 16 '18 at 8:50
















0















I am already adding dropout regularization. I am trying to build a multiclass text classification multilayer perceptron model.
My model:



model = Sequential([
Dropout(rate=0.2, input_shape=features),
Dense(units=64, activation='relu'),
Dropout(rate=0.2),
Dense(units=64, activation='relu'),
Dropout(rate=0.2),
Dense(units=16, activation='softmax')])


My model.summary():



_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dropout_1 (Dropout) (None, 20000) 0
_________________________________________________________________
dense_1 (Dense) (None, 64) 1280064
_________________________________________________________________
dropout_2 (Dropout) (None, 64) 0
_________________________________________________________________
dense_2 (Dense) (None, 64) 4160
_________________________________________________________________
dropout_3 (Dropout) (None, 64) 0
_________________________________________________________________
dense_3 (Dense) (None, 16) 1040
=================================================================
Total params: 1,285,264
Trainable params: 1,285,264
Non-trainable params: 0
_________________________________________________________________
None
Train on 6940 samples, validate on 1735 samples


I am getting:



Epoch 16/1000
- 4s - loss: 0.4926 - acc: 0.8719 - val_loss: 1.2640 - val_acc: 0.6640
Validation accuracy: 0.6639769498140736, loss: 1.2639631692545559


The validation accuracy is ~20% less than the accuracy, and the validation loss is way higher than the training loss.



I am already using dropout regularization, and using epochs = 1000, batch size = 512 and early stopping on val_loss.



Any suggestions?










share|improve this question

























  • Could you please also add a code how do you run model.fit( ... ).

    – Danylo Baibak
    Nov 15 '18 at 7:29











  • Would also need how you are doing the preprocessing on training and validation data if any

    – Vivek Kumar
    Nov 15 '18 at 8:09











  • @DanyloBaibak As I said, epochs = 1000, batch size = 512, verbose = 2, rest are just my local variables.

    – Ahmed El Gohary
    Nov 15 '18 at 22:49











  • @VivekKumar, tokenized the text as unigrams and bigrams and vectorizing using tf-idf, then i SelectKBest 20,000 features

    – Ahmed El Gohary
    Nov 15 '18 at 22:50











  • @AhmedElGohary, do you have some validation dataset? The easiest way is model.fit( ...., validation_split=0.1)

    – Danylo Baibak
    Nov 16 '18 at 8:50














0












0








0








I am already adding dropout regularization. I am trying to build a multiclass text classification multilayer perceptron model.
My model:



model = Sequential([
Dropout(rate=0.2, input_shape=features),
Dense(units=64, activation='relu'),
Dropout(rate=0.2),
Dense(units=64, activation='relu'),
Dropout(rate=0.2),
Dense(units=16, activation='softmax')])


My model.summary():



_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dropout_1 (Dropout) (None, 20000) 0
_________________________________________________________________
dense_1 (Dense) (None, 64) 1280064
_________________________________________________________________
dropout_2 (Dropout) (None, 64) 0
_________________________________________________________________
dense_2 (Dense) (None, 64) 4160
_________________________________________________________________
dropout_3 (Dropout) (None, 64) 0
_________________________________________________________________
dense_3 (Dense) (None, 16) 1040
=================================================================
Total params: 1,285,264
Trainable params: 1,285,264
Non-trainable params: 0
_________________________________________________________________
None
Train on 6940 samples, validate on 1735 samples


I am getting:



Epoch 16/1000
- 4s - loss: 0.4926 - acc: 0.8719 - val_loss: 1.2640 - val_acc: 0.6640
Validation accuracy: 0.6639769498140736, loss: 1.2639631692545559


The validation accuracy is ~20% less than the accuracy, and the validation loss is way higher than the training loss.



I am already using dropout regularization, and using epochs = 1000, batch size = 512 and early stopping on val_loss.



Any suggestions?










share|improve this question
















I am already adding dropout regularization. I am trying to build a multiclass text classification multilayer perceptron model.
My model:



model = Sequential([
Dropout(rate=0.2, input_shape=features),
Dense(units=64, activation='relu'),
Dropout(rate=0.2),
Dense(units=64, activation='relu'),
Dropout(rate=0.2),
Dense(units=16, activation='softmax')])


My model.summary():



_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dropout_1 (Dropout) (None, 20000) 0
_________________________________________________________________
dense_1 (Dense) (None, 64) 1280064
_________________________________________________________________
dropout_2 (Dropout) (None, 64) 0
_________________________________________________________________
dense_2 (Dense) (None, 64) 4160
_________________________________________________________________
dropout_3 (Dropout) (None, 64) 0
_________________________________________________________________
dense_3 (Dense) (None, 16) 1040
=================================================================
Total params: 1,285,264
Trainable params: 1,285,264
Non-trainable params: 0
_________________________________________________________________
None
Train on 6940 samples, validate on 1735 samples


I am getting:



Epoch 16/1000
- 4s - loss: 0.4926 - acc: 0.8719 - val_loss: 1.2640 - val_acc: 0.6640
Validation accuracy: 0.6639769498140736, loss: 1.2639631692545559


The validation accuracy is ~20% less than the accuracy, and the validation loss is way higher than the training loss.



I am already using dropout regularization, and using epochs = 1000, batch size = 512 and early stopping on val_loss.



Any suggestions?







python machine-learning scikit-learn keras text-classification






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 15 '18 at 1:20









Milo Lu

1,61911527




1,61911527










asked Nov 15 '18 at 0:48









Ahmed El GoharyAhmed El Gohary

263




263













  • Could you please also add a code how do you run model.fit( ... ).

    – Danylo Baibak
    Nov 15 '18 at 7:29











  • Would also need how you are doing the preprocessing on training and validation data if any

    – Vivek Kumar
    Nov 15 '18 at 8:09











  • @DanyloBaibak As I said, epochs = 1000, batch size = 512, verbose = 2, rest are just my local variables.

    – Ahmed El Gohary
    Nov 15 '18 at 22:49











  • @VivekKumar, tokenized the text as unigrams and bigrams and vectorizing using tf-idf, then i SelectKBest 20,000 features

    – Ahmed El Gohary
    Nov 15 '18 at 22:50











  • @AhmedElGohary, do you have some validation dataset? The easiest way is model.fit( ...., validation_split=0.1)

    – Danylo Baibak
    Nov 16 '18 at 8:50



















  • Could you please also add a code how do you run model.fit( ... ).

    – Danylo Baibak
    Nov 15 '18 at 7:29











  • Would also need how you are doing the preprocessing on training and validation data if any

    – Vivek Kumar
    Nov 15 '18 at 8:09











  • @DanyloBaibak As I said, epochs = 1000, batch size = 512, verbose = 2, rest are just my local variables.

    – Ahmed El Gohary
    Nov 15 '18 at 22:49











  • @VivekKumar, tokenized the text as unigrams and bigrams and vectorizing using tf-idf, then i SelectKBest 20,000 features

    – Ahmed El Gohary
    Nov 15 '18 at 22:50











  • @AhmedElGohary, do you have some validation dataset? The easiest way is model.fit( ...., validation_split=0.1)

    – Danylo Baibak
    Nov 16 '18 at 8:50

















Could you please also add a code how do you run model.fit( ... ).

– Danylo Baibak
Nov 15 '18 at 7:29





Could you please also add a code how do you run model.fit( ... ).

– Danylo Baibak
Nov 15 '18 at 7:29













Would also need how you are doing the preprocessing on training and validation data if any

– Vivek Kumar
Nov 15 '18 at 8:09





Would also need how you are doing the preprocessing on training and validation data if any

– Vivek Kumar
Nov 15 '18 at 8:09













@DanyloBaibak As I said, epochs = 1000, batch size = 512, verbose = 2, rest are just my local variables.

– Ahmed El Gohary
Nov 15 '18 at 22:49





@DanyloBaibak As I said, epochs = 1000, batch size = 512, verbose = 2, rest are just my local variables.

– Ahmed El Gohary
Nov 15 '18 at 22:49













@VivekKumar, tokenized the text as unigrams and bigrams and vectorizing using tf-idf, then i SelectKBest 20,000 features

– Ahmed El Gohary
Nov 15 '18 at 22:50





@VivekKumar, tokenized the text as unigrams and bigrams and vectorizing using tf-idf, then i SelectKBest 20,000 features

– Ahmed El Gohary
Nov 15 '18 at 22:50













@AhmedElGohary, do you have some validation dataset? The easiest way is model.fit( ...., validation_split=0.1)

– Danylo Baibak
Nov 16 '18 at 8:50





@AhmedElGohary, do you have some validation dataset? The easiest way is model.fit( ...., validation_split=0.1)

– Danylo Baibak
Nov 16 '18 at 8:50












0






active

oldest

votes











Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53310915%2fhow-to-prevent-overfitting-in-keras-sequential-model%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53310915%2fhow-to-prevent-overfitting-in-keras-sequential-model%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Florida Star v. B. J. F.

Danny Elfman

Lugert, Oklahoma