Mapping columns from one dataframe to another to create a new column [duplicate]












5
















This question already has an answer here:




  • Pandas Merging 101

    1 answer




i have a dataframe



id  store    address
1 100 xyz
2 200 qwe
3 300 asd
4 400 zxc
5 500 bnm


i have another dataframe df2



serialNo    store_code  warehouse
1 300 Land
2 500 Sea
3 100 Land
4 200 Sea
5 400 Land


I want my final dataframe to look like:



id  store    address  warehouse
1 100 xyz Land
2 200 qwe Sea
3 300 asd Land
4 400 zxc Land
5 500 bnm Sea


i.e map from one dataframe onto another creating new column










share|improve this question















marked as duplicate by coldspeed pandas
Users with the  pandas badge can single-handedly close pandas questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 1 at 16:05


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.























    5
















    This question already has an answer here:




    • Pandas Merging 101

      1 answer




    i have a dataframe



    id  store    address
    1 100 xyz
    2 200 qwe
    3 300 asd
    4 400 zxc
    5 500 bnm


    i have another dataframe df2



    serialNo    store_code  warehouse
    1 300 Land
    2 500 Sea
    3 100 Land
    4 200 Sea
    5 400 Land


    I want my final dataframe to look like:



    id  store    address  warehouse
    1 100 xyz Land
    2 200 qwe Sea
    3 300 asd Land
    4 400 zxc Land
    5 500 bnm Sea


    i.e map from one dataframe onto another creating new column










    share|improve this question















    marked as duplicate by coldspeed pandas
    Users with the  pandas badge can single-handedly close pandas questions as duplicates and reopen them as needed.

    StackExchange.ready(function() {
    if (StackExchange.options.isMobile) return;

    $('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
    var $hover = $(this).addClass('hover-bound'),
    $msg = $hover.siblings('.dupe-hammer-message');

    $hover.hover(
    function() {
    $hover.showInfoMessage('', {
    messageElement: $msg.clone().show(),
    transient: false,
    position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
    dismissable: false,
    relativeToBody: true
    });
    },
    function() {
    StackExchange.helpers.removeMessages();
    }
    );
    });
    });
    Jan 1 at 16:05


    This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.





















      5












      5








      5


      7







      This question already has an answer here:




      • Pandas Merging 101

        1 answer




      i have a dataframe



      id  store    address
      1 100 xyz
      2 200 qwe
      3 300 asd
      4 400 zxc
      5 500 bnm


      i have another dataframe df2



      serialNo    store_code  warehouse
      1 300 Land
      2 500 Sea
      3 100 Land
      4 200 Sea
      5 400 Land


      I want my final dataframe to look like:



      id  store    address  warehouse
      1 100 xyz Land
      2 200 qwe Sea
      3 300 asd Land
      4 400 zxc Land
      5 500 bnm Sea


      i.e map from one dataframe onto another creating new column










      share|improve this question

















      This question already has an answer here:




      • Pandas Merging 101

        1 answer




      i have a dataframe



      id  store    address
      1 100 xyz
      2 200 qwe
      3 300 asd
      4 400 zxc
      5 500 bnm


      i have another dataframe df2



      serialNo    store_code  warehouse
      1 300 Land
      2 500 Sea
      3 100 Land
      4 200 Sea
      5 400 Land


      I want my final dataframe to look like:



      id  store    address  warehouse
      1 100 xyz Land
      2 200 qwe Sea
      3 300 asd Land
      4 400 zxc Land
      5 500 bnm Sea


      i.e map from one dataframe onto another creating new column





      This question already has an answer here:




      • Pandas Merging 101

        1 answer








      python pandas dataframe mapping






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Sep 5 '17 at 23:41









      coldspeed

      139k24153239




      139k24153239










      asked Sep 5 '17 at 7:51









      ShubhamShubham

      1,88341850




      1,88341850




      marked as duplicate by coldspeed pandas
      Users with the  pandas badge can single-handedly close pandas questions as duplicates and reopen them as needed.

      StackExchange.ready(function() {
      if (StackExchange.options.isMobile) return;

      $('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
      var $hover = $(this).addClass('hover-bound'),
      $msg = $hover.siblings('.dupe-hammer-message');

      $hover.hover(
      function() {
      $hover.showInfoMessage('', {
      messageElement: $msg.clone().show(),
      transient: false,
      position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
      dismissable: false,
      relativeToBody: true
      });
      },
      function() {
      StackExchange.helpers.removeMessages();
      }
      );
      });
      });
      Jan 1 at 16:05


      This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









      marked as duplicate by coldspeed pandas
      Users with the  pandas badge can single-handedly close pandas questions as duplicates and reopen them as needed.

      StackExchange.ready(function() {
      if (StackExchange.options.isMobile) return;

      $('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
      var $hover = $(this).addClass('hover-bound'),
      $msg = $hover.siblings('.dupe-hammer-message');

      $hover.hover(
      function() {
      $hover.showInfoMessage('', {
      messageElement: $msg.clone().show(),
      transient: false,
      position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
      dismissable: false,
      relativeToBody: true
      });
      },
      function() {
      StackExchange.helpers.removeMessages();
      }
      );
      });
      });
      Jan 1 at 16:05


      This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.


























          2 Answers
          2






          active

          oldest

          votes


















          10














          df.merge



          out = (df1.merge(df2, left_on='store', right_on='store_code')
          .reindex(columns=['id', 'store', 'address', 'warehouse']))
          print(out)

          id store address warehouse
          0 1 100 xyz Land
          1 2 200 qwe Sea
          2 3 300 asd Land
          3 4 400 zxc Land
          4 5 500 bnm Sea





          pd.concat + df.sort_values



          u = df1.sort_values('store')
          v = df2.sort_values('store_code')[['warehouse']].reset_index(drop=1)
          out = pd.concat([u, v], 1)

          print(out)

          id store address warehouse
          0 1 100 xyz Land
          1 2 200 qwe Sea
          2 3 300 asd Land
          3 4 400 zxc Land
          4 5 500 bnm Sea


          The first sort call is redundant assuming your dataframe is already sorted on store, in which case you may remove it.






          df.replace/df.map



          s = df1.store.replace(df2.set_index('store_code')['warehouse'])
          print(s)
          0 Land
          1 Sea
          2 Land
          3 Land
          4 Sea

          df1['warehouse'] = s
          print(df1)

          id store address warehouse
          0 1 100 xyz Land
          1 2 200 qwe Sea
          2 3 300 asd Land
          3 4 400 zxc Land
          4 5 500 bnm Sea


          Alternatively, create a mapping explicitly. This works if you want to use it later.



          mapping = dict(df2[['store_code', 'warehouse']].values)
          df1['warehouse'] = df1.store.map(mapping)
          print(df1)

          id store address warehouse
          0 1 100 xyz Land
          1 2 200 qwe Sea
          2 3 300 asd Land
          3 4 400 zxc Land
          4 5 500 bnm Sea





          share|improve this answer

































            2














            Use map or join:



            df1['warehouse'] = df1['store'].map(df2.set_index('store_code')['warehouse'])
            print (df1)
            id store address warehouse
            0 1 100 xyz Land
            1 2 200 qwe Sea
            2 3 300 asd Land
            3 4 400 zxc Land
            4 5 500 bnm Sea




            df1 = df1.join(df2.set_index('store_code'), on=['store']).drop('serialNo', 1)
            print (df1)
            id store address warehouse
            0 1 100 xyz Land
            1 2 200 qwe Sea
            2 3 300 asd Land
            3 4 400 zxc Land
            4 5 500 bnm Sea





            share|improve this answer


























            • i'm getting this error, when running .map code in a similar dataset. Reindexing only valid with uniquely valued Index objects

              – Shubham
              Sep 5 '17 at 9:01













            • I think there is problem you have duplicates in store_code in df2. so need df1['store'].map(df2.drop_duplicates('store_code').set_index('store_code')['warehouse'])

              – jezrael
              Sep 5 '17 at 9:05






            • 1





              correct! Thanks :)

              – Shubham
              Sep 5 '17 at 9:14


















            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            10














            df.merge



            out = (df1.merge(df2, left_on='store', right_on='store_code')
            .reindex(columns=['id', 'store', 'address', 'warehouse']))
            print(out)

            id store address warehouse
            0 1 100 xyz Land
            1 2 200 qwe Sea
            2 3 300 asd Land
            3 4 400 zxc Land
            4 5 500 bnm Sea





            pd.concat + df.sort_values



            u = df1.sort_values('store')
            v = df2.sort_values('store_code')[['warehouse']].reset_index(drop=1)
            out = pd.concat([u, v], 1)

            print(out)

            id store address warehouse
            0 1 100 xyz Land
            1 2 200 qwe Sea
            2 3 300 asd Land
            3 4 400 zxc Land
            4 5 500 bnm Sea


            The first sort call is redundant assuming your dataframe is already sorted on store, in which case you may remove it.






            df.replace/df.map



            s = df1.store.replace(df2.set_index('store_code')['warehouse'])
            print(s)
            0 Land
            1 Sea
            2 Land
            3 Land
            4 Sea

            df1['warehouse'] = s
            print(df1)

            id store address warehouse
            0 1 100 xyz Land
            1 2 200 qwe Sea
            2 3 300 asd Land
            3 4 400 zxc Land
            4 5 500 bnm Sea


            Alternatively, create a mapping explicitly. This works if you want to use it later.



            mapping = dict(df2[['store_code', 'warehouse']].values)
            df1['warehouse'] = df1.store.map(mapping)
            print(df1)

            id store address warehouse
            0 1 100 xyz Land
            1 2 200 qwe Sea
            2 3 300 asd Land
            3 4 400 zxc Land
            4 5 500 bnm Sea





            share|improve this answer






























              10














              df.merge



              out = (df1.merge(df2, left_on='store', right_on='store_code')
              .reindex(columns=['id', 'store', 'address', 'warehouse']))
              print(out)

              id store address warehouse
              0 1 100 xyz Land
              1 2 200 qwe Sea
              2 3 300 asd Land
              3 4 400 zxc Land
              4 5 500 bnm Sea





              pd.concat + df.sort_values



              u = df1.sort_values('store')
              v = df2.sort_values('store_code')[['warehouse']].reset_index(drop=1)
              out = pd.concat([u, v], 1)

              print(out)

              id store address warehouse
              0 1 100 xyz Land
              1 2 200 qwe Sea
              2 3 300 asd Land
              3 4 400 zxc Land
              4 5 500 bnm Sea


              The first sort call is redundant assuming your dataframe is already sorted on store, in which case you may remove it.






              df.replace/df.map



              s = df1.store.replace(df2.set_index('store_code')['warehouse'])
              print(s)
              0 Land
              1 Sea
              2 Land
              3 Land
              4 Sea

              df1['warehouse'] = s
              print(df1)

              id store address warehouse
              0 1 100 xyz Land
              1 2 200 qwe Sea
              2 3 300 asd Land
              3 4 400 zxc Land
              4 5 500 bnm Sea


              Alternatively, create a mapping explicitly. This works if you want to use it later.



              mapping = dict(df2[['store_code', 'warehouse']].values)
              df1['warehouse'] = df1.store.map(mapping)
              print(df1)

              id store address warehouse
              0 1 100 xyz Land
              1 2 200 qwe Sea
              2 3 300 asd Land
              3 4 400 zxc Land
              4 5 500 bnm Sea





              share|improve this answer




























                10












                10








                10







                df.merge



                out = (df1.merge(df2, left_on='store', right_on='store_code')
                .reindex(columns=['id', 'store', 'address', 'warehouse']))
                print(out)

                id store address warehouse
                0 1 100 xyz Land
                1 2 200 qwe Sea
                2 3 300 asd Land
                3 4 400 zxc Land
                4 5 500 bnm Sea





                pd.concat + df.sort_values



                u = df1.sort_values('store')
                v = df2.sort_values('store_code')[['warehouse']].reset_index(drop=1)
                out = pd.concat([u, v], 1)

                print(out)

                id store address warehouse
                0 1 100 xyz Land
                1 2 200 qwe Sea
                2 3 300 asd Land
                3 4 400 zxc Land
                4 5 500 bnm Sea


                The first sort call is redundant assuming your dataframe is already sorted on store, in which case you may remove it.






                df.replace/df.map



                s = df1.store.replace(df2.set_index('store_code')['warehouse'])
                print(s)
                0 Land
                1 Sea
                2 Land
                3 Land
                4 Sea

                df1['warehouse'] = s
                print(df1)

                id store address warehouse
                0 1 100 xyz Land
                1 2 200 qwe Sea
                2 3 300 asd Land
                3 4 400 zxc Land
                4 5 500 bnm Sea


                Alternatively, create a mapping explicitly. This works if you want to use it later.



                mapping = dict(df2[['store_code', 'warehouse']].values)
                df1['warehouse'] = df1.store.map(mapping)
                print(df1)

                id store address warehouse
                0 1 100 xyz Land
                1 2 200 qwe Sea
                2 3 300 asd Land
                3 4 400 zxc Land
                4 5 500 bnm Sea





                share|improve this answer















                df.merge



                out = (df1.merge(df2, left_on='store', right_on='store_code')
                .reindex(columns=['id', 'store', 'address', 'warehouse']))
                print(out)

                id store address warehouse
                0 1 100 xyz Land
                1 2 200 qwe Sea
                2 3 300 asd Land
                3 4 400 zxc Land
                4 5 500 bnm Sea





                pd.concat + df.sort_values



                u = df1.sort_values('store')
                v = df2.sort_values('store_code')[['warehouse']].reset_index(drop=1)
                out = pd.concat([u, v], 1)

                print(out)

                id store address warehouse
                0 1 100 xyz Land
                1 2 200 qwe Sea
                2 3 300 asd Land
                3 4 400 zxc Land
                4 5 500 bnm Sea


                The first sort call is redundant assuming your dataframe is already sorted on store, in which case you may remove it.






                df.replace/df.map



                s = df1.store.replace(df2.set_index('store_code')['warehouse'])
                print(s)
                0 Land
                1 Sea
                2 Land
                3 Land
                4 Sea

                df1['warehouse'] = s
                print(df1)

                id store address warehouse
                0 1 100 xyz Land
                1 2 200 qwe Sea
                2 3 300 asd Land
                3 4 400 zxc Land
                4 5 500 bnm Sea


                Alternatively, create a mapping explicitly. This works if you want to use it later.



                mapping = dict(df2[['store_code', 'warehouse']].values)
                df1['warehouse'] = df1.store.map(mapping)
                print(df1)

                id store address warehouse
                0 1 100 xyz Land
                1 2 200 qwe Sea
                2 3 300 asd Land
                3 4 400 zxc Land
                4 5 500 bnm Sea






                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited Jan 1 at 16:07

























                answered Sep 5 '17 at 8:04









                coldspeedcoldspeed

                139k24153239




                139k24153239

























                    2














                    Use map or join:



                    df1['warehouse'] = df1['store'].map(df2.set_index('store_code')['warehouse'])
                    print (df1)
                    id store address warehouse
                    0 1 100 xyz Land
                    1 2 200 qwe Sea
                    2 3 300 asd Land
                    3 4 400 zxc Land
                    4 5 500 bnm Sea




                    df1 = df1.join(df2.set_index('store_code'), on=['store']).drop('serialNo', 1)
                    print (df1)
                    id store address warehouse
                    0 1 100 xyz Land
                    1 2 200 qwe Sea
                    2 3 300 asd Land
                    3 4 400 zxc Land
                    4 5 500 bnm Sea





                    share|improve this answer


























                    • i'm getting this error, when running .map code in a similar dataset. Reindexing only valid with uniquely valued Index objects

                      – Shubham
                      Sep 5 '17 at 9:01













                    • I think there is problem you have duplicates in store_code in df2. so need df1['store'].map(df2.drop_duplicates('store_code').set_index('store_code')['warehouse'])

                      – jezrael
                      Sep 5 '17 at 9:05






                    • 1





                      correct! Thanks :)

                      – Shubham
                      Sep 5 '17 at 9:14
















                    2














                    Use map or join:



                    df1['warehouse'] = df1['store'].map(df2.set_index('store_code')['warehouse'])
                    print (df1)
                    id store address warehouse
                    0 1 100 xyz Land
                    1 2 200 qwe Sea
                    2 3 300 asd Land
                    3 4 400 zxc Land
                    4 5 500 bnm Sea




                    df1 = df1.join(df2.set_index('store_code'), on=['store']).drop('serialNo', 1)
                    print (df1)
                    id store address warehouse
                    0 1 100 xyz Land
                    1 2 200 qwe Sea
                    2 3 300 asd Land
                    3 4 400 zxc Land
                    4 5 500 bnm Sea





                    share|improve this answer


























                    • i'm getting this error, when running .map code in a similar dataset. Reindexing only valid with uniquely valued Index objects

                      – Shubham
                      Sep 5 '17 at 9:01













                    • I think there is problem you have duplicates in store_code in df2. so need df1['store'].map(df2.drop_duplicates('store_code').set_index('store_code')['warehouse'])

                      – jezrael
                      Sep 5 '17 at 9:05






                    • 1





                      correct! Thanks :)

                      – Shubham
                      Sep 5 '17 at 9:14














                    2












                    2








                    2







                    Use map or join:



                    df1['warehouse'] = df1['store'].map(df2.set_index('store_code')['warehouse'])
                    print (df1)
                    id store address warehouse
                    0 1 100 xyz Land
                    1 2 200 qwe Sea
                    2 3 300 asd Land
                    3 4 400 zxc Land
                    4 5 500 bnm Sea




                    df1 = df1.join(df2.set_index('store_code'), on=['store']).drop('serialNo', 1)
                    print (df1)
                    id store address warehouse
                    0 1 100 xyz Land
                    1 2 200 qwe Sea
                    2 3 300 asd Land
                    3 4 400 zxc Land
                    4 5 500 bnm Sea





                    share|improve this answer















                    Use map or join:



                    df1['warehouse'] = df1['store'].map(df2.set_index('store_code')['warehouse'])
                    print (df1)
                    id store address warehouse
                    0 1 100 xyz Land
                    1 2 200 qwe Sea
                    2 3 300 asd Land
                    3 4 400 zxc Land
                    4 5 500 bnm Sea




                    df1 = df1.join(df2.set_index('store_code'), on=['store']).drop('serialNo', 1)
                    print (df1)
                    id store address warehouse
                    0 1 100 xyz Land
                    1 2 200 qwe Sea
                    2 3 300 asd Land
                    3 4 400 zxc Land
                    4 5 500 bnm Sea






                    share|improve this answer














                    share|improve this answer



                    share|improve this answer








                    edited Sep 5 '17 at 8:17

























                    answered Sep 5 '17 at 7:55









                    jezraeljezrael

                    354k26318394




                    354k26318394













                    • i'm getting this error, when running .map code in a similar dataset. Reindexing only valid with uniquely valued Index objects

                      – Shubham
                      Sep 5 '17 at 9:01













                    • I think there is problem you have duplicates in store_code in df2. so need df1['store'].map(df2.drop_duplicates('store_code').set_index('store_code')['warehouse'])

                      – jezrael
                      Sep 5 '17 at 9:05






                    • 1





                      correct! Thanks :)

                      – Shubham
                      Sep 5 '17 at 9:14



















                    • i'm getting this error, when running .map code in a similar dataset. Reindexing only valid with uniquely valued Index objects

                      – Shubham
                      Sep 5 '17 at 9:01













                    • I think there is problem you have duplicates in store_code in df2. so need df1['store'].map(df2.drop_duplicates('store_code').set_index('store_code')['warehouse'])

                      – jezrael
                      Sep 5 '17 at 9:05






                    • 1





                      correct! Thanks :)

                      – Shubham
                      Sep 5 '17 at 9:14

















                    i'm getting this error, when running .map code in a similar dataset. Reindexing only valid with uniquely valued Index objects

                    – Shubham
                    Sep 5 '17 at 9:01







                    i'm getting this error, when running .map code in a similar dataset. Reindexing only valid with uniquely valued Index objects

                    – Shubham
                    Sep 5 '17 at 9:01















                    I think there is problem you have duplicates in store_code in df2. so need df1['store'].map(df2.drop_duplicates('store_code').set_index('store_code')['warehouse'])

                    – jezrael
                    Sep 5 '17 at 9:05





                    I think there is problem you have duplicates in store_code in df2. so need df1['store'].map(df2.drop_duplicates('store_code').set_index('store_code')['warehouse'])

                    – jezrael
                    Sep 5 '17 at 9:05




                    1




                    1





                    correct! Thanks :)

                    – Shubham
                    Sep 5 '17 at 9:14





                    correct! Thanks :)

                    – Shubham
                    Sep 5 '17 at 9:14



                    Popular posts from this blog

                    Florida Star v. B. J. F.

                    Danny Elfman

                    Lugert, Oklahoma