Electric multiple unit




A multiple unit train consisting of self-propelled carriages, using electricity as the motive power



A Deutsche Bahn ICE 3 EMU capable of up to 320 km/h (199 mph) in Rhineland-Palatinate, Germany


















An electric multiple unit or EMU is a multiple-unit train consisting of self-propelled carriages, using electricity as the motive power. An EMU requires no separate locomotive, as electric traction motors are incorporated within one or a number of the carriages. An EMU is usually formed of two or more semi-permanently coupled carriages, but electrically powered single-unit railcars are also generally classed as EMUs. The great majority of EMUs are passenger trains, but versions also exist for carrying parcels and mail.


EMUs are popular on commuter and suburban rail networks around the world due to their fast acceleration and pollution-free operation.[1] Being quieter than diesel multiple units (DMUs) and locomotive-hauled trains, EMUs can operate later at night and more frequently without disturbing nearby residents. In addition, tunnel design for EMU trains is simpler as no provision is needed for exhausting fumes, although retrofitting existing limited-clearance tunnels to accommodate the extra equipment needed to transmit electric power to the train can be difficult.




Contents






  • 1 History


  • 2 Types


  • 3 Examples


  • 4 Fuel cell development


  • 5 See also


  • 6 References





History




Liverpool Overhead Railway EMU carriage in the Museum of Liverpool




South Side Elevated Railroad car #1, one of the cars that Frank Sprague converted to MU operation in Chicago


Multiple unit train control was first used in the 1890s.


The Liverpool Overhead Railway opened in 1893 with two car electric multiple units,[2] controllers in cabs at both ends directly controlling the traction current to motors on both cars.[3]


The multiple unit traction control system was developed by Frank Sprague and first applied and tested on the South Side Elevated Railroad (now part of the Chicago 'L') in 1897. In 1895, derived from his company's invention and production of direct current elevator control systems, Frank Sprague invented a multiple unit controller for electric train operation. This accelerated the construction of electric traction railways and trolley systems worldwide. Each car of the train has its own traction motors: by means of motor control relays in each car energized by train-line wires from the front car all of the traction motors in the train are controlled in unison.



Types




Metro-North Railroad M8 married pairs in Port Chester, New York




A First ScotRail Class 380 EMU at Haymarket in Edinburgh, Scotland


The cars that form a complete EMU set can usually be separated by function into four types: power car, motor car, driving car, and trailer car. Each car can have more than one function, such as a motor-driving car or power-driving car.



  • A power car carries the necessary equipment to draw power from the electrified infrastructure, such as pickup shoes for third rail systems and pantographs for overhead systems, and transformers.

  • Motor cars carry the traction motors to move the train, and are often combined with the power car to avoid high-voltage inter-car connections.

  • Driving cars are similar to a cab car, containing a driver's cab for controlling the train. An EMU will usually have two driving cars at its outer ends.

  • Trailer cars are any cars that carry little or no traction or power related equipment, and are similar to passenger cars in a locomotive-hauled train. On third rail systems the outer vehicles usually carry the pick up shoes, with the motor vehicles receiving the current via intra-unit connections.


Many modern 2-car EMU sets are set up as twin or "married pair" units. While both units in a married pair are typically driving motors, the ancillary equipment (air compressor and tanks, batteries and charging equipment, traction power and control equipment, etc.) are shared between the two cars in the set. Since neither car can operate without its "partner", such sets are permanently coupled and can only be split at maintenance facilities. Advantages of married pair units include weight and cost savings over single-unit cars (due to halving the ancillary equipment required per set) while allowing all cars to be powered, unlike a motor-trailer combination. Each car has only one control cab, located at the outer end of the pair, saving space and expense over a cab at both ends of each car. Disadvantages include a loss of operational flexibility, as trains must be multiples of two cars, and a failure on a single car could force removing both it and its partner from service.



Examples


Some of the more famous electric multiple units in the world are high-speed trains: the AGV in France, Italian Pendolino, Shinkansen in Japan, the China Railway High-speed in China and ICE 3 in Germany. The retired New York–Washington Metroliner service, first operated by the Pennsylvania Railroad and later by Amtrak, also featured high-speed electric multiple-unit cars, see Budd Metroliner.



Fuel cell development


EMUs powered by fuel cells are under development. If successful, this would avoid the need for an overhead line or third rail. An example is Alstom’s hydrogen-powered Coradia iLint.[4] The term hydrail has been coined for hydrogen-powered rail vehicles.



See also



  • Diesel multiple unit

  • Battery electric multiple unit

  • British electric multiple units

  • Electric locomotive



References





  1. ^ N. K. De (2004). Electric Drives. PHI Learning Pvt. Ltd. 8.4 "Electric traction", p.84. ISBN 9788120314924..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ "Liverpool Overhead Railway motor coach number 3, 1892". National Museums Liverpool. Retrieved 2011-01-21. This is one of the original motor coaches which has electric motors mounted beneath the floor, a driving cab at one end and third class accommodation with wooden seats.


  3. ^ Frank Sprague (18 January 1902). "Mr Sprague answers Mr Westinghouse". The New York Times. Retrieved 16 June 2012.


  4. ^ "What you need to know about Alstom's hydrogen-powered Coradia iLint - Global Rail News". globalrailnews.com. 24 October 2017.

















Popular posts from this blog

Florida Star v. B. J. F.

Danny Elfman

Lugert, Oklahoma