Multiplying Matrices for Hotelling's T2 [closed]











up vote
-1
down vote

favorite












So, I have the following values



 u <- a 10x1 matrix
Y <- a 10x250 matrix
Ybar <- the column means of Y, a 10x1matrix
n <- the length of Ybar
S <- variance of y


The following is my code:



 u <- cbind(1,2,3,4,5,6,7,8,9,10)
Y <- stuff.matrix
Ybar <- colMeans(stuff.matrix)
n <- length(Ybar)
S <- var(Y)
T2 <- n*t(Ybar-u)%*%solve(S)%*%(Ybar-u)


I'm trying to multiply the matrices as you see in T2 but I just keep getting an error




non-conformable arguments











share|improve this question















closed as off-topic by G. Grothendieck, Spacedman, phiver, jogo, Rui Barradas Nov 11 at 19:57


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "Questions seeking debugging help ("why isn't this code working?") must include the desired behavior, a specific problem or error and the shortest code necessary to reproduce it in the question itself. Questions without a clear problem statement are not useful to other readers. See: How to create a Minimal, Complete, and Verifiable example." – G. Grothendieck, phiver, jogo, Rui Barradas

If this question can be reworded to fit the rules in the help center, please edit the question.













  • what's "stuff.matrix"? Can you make a reproducible example (maybe fill some matrices with random numbers) so we can cut and paste and duplicate your error?
    – Spacedman
    Nov 10 at 18:24










  • hint: try each bit of the T2 calculation to narrow down where the problem is.
    – Spacedman
    Nov 10 at 18:30















up vote
-1
down vote

favorite












So, I have the following values



 u <- a 10x1 matrix
Y <- a 10x250 matrix
Ybar <- the column means of Y, a 10x1matrix
n <- the length of Ybar
S <- variance of y


The following is my code:



 u <- cbind(1,2,3,4,5,6,7,8,9,10)
Y <- stuff.matrix
Ybar <- colMeans(stuff.matrix)
n <- length(Ybar)
S <- var(Y)
T2 <- n*t(Ybar-u)%*%solve(S)%*%(Ybar-u)


I'm trying to multiply the matrices as you see in T2 but I just keep getting an error




non-conformable arguments











share|improve this question















closed as off-topic by G. Grothendieck, Spacedman, phiver, jogo, Rui Barradas Nov 11 at 19:57


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "Questions seeking debugging help ("why isn't this code working?") must include the desired behavior, a specific problem or error and the shortest code necessary to reproduce it in the question itself. Questions without a clear problem statement are not useful to other readers. See: How to create a Minimal, Complete, and Verifiable example." – G. Grothendieck, phiver, jogo, Rui Barradas

If this question can be reworded to fit the rules in the help center, please edit the question.













  • what's "stuff.matrix"? Can you make a reproducible example (maybe fill some matrices with random numbers) so we can cut and paste and duplicate your error?
    – Spacedman
    Nov 10 at 18:24










  • hint: try each bit of the T2 calculation to narrow down where the problem is.
    – Spacedman
    Nov 10 at 18:30













up vote
-1
down vote

favorite









up vote
-1
down vote

favorite











So, I have the following values



 u <- a 10x1 matrix
Y <- a 10x250 matrix
Ybar <- the column means of Y, a 10x1matrix
n <- the length of Ybar
S <- variance of y


The following is my code:



 u <- cbind(1,2,3,4,5,6,7,8,9,10)
Y <- stuff.matrix
Ybar <- colMeans(stuff.matrix)
n <- length(Ybar)
S <- var(Y)
T2 <- n*t(Ybar-u)%*%solve(S)%*%(Ybar-u)


I'm trying to multiply the matrices as you see in T2 but I just keep getting an error




non-conformable arguments











share|improve this question















So, I have the following values



 u <- a 10x1 matrix
Y <- a 10x250 matrix
Ybar <- the column means of Y, a 10x1matrix
n <- the length of Ybar
S <- variance of y


The following is my code:



 u <- cbind(1,2,3,4,5,6,7,8,9,10)
Y <- stuff.matrix
Ybar <- colMeans(stuff.matrix)
n <- length(Ybar)
S <- var(Y)
T2 <- n*t(Ybar-u)%*%solve(S)%*%(Ybar-u)


I'm trying to multiply the matrices as you see in T2 but I just keep getting an error




non-conformable arguments








r statistics linear-algebra






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 11 at 5:17









Al Fahad

739621




739621










asked Nov 10 at 17:14









haramassive

456




456




closed as off-topic by G. Grothendieck, Spacedman, phiver, jogo, Rui Barradas Nov 11 at 19:57


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "Questions seeking debugging help ("why isn't this code working?") must include the desired behavior, a specific problem or error and the shortest code necessary to reproduce it in the question itself. Questions without a clear problem statement are not useful to other readers. See: How to create a Minimal, Complete, and Verifiable example." – G. Grothendieck, phiver, jogo, Rui Barradas

If this question can be reworded to fit the rules in the help center, please edit the question.




closed as off-topic by G. Grothendieck, Spacedman, phiver, jogo, Rui Barradas Nov 11 at 19:57


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "Questions seeking debugging help ("why isn't this code working?") must include the desired behavior, a specific problem or error and the shortest code necessary to reproduce it in the question itself. Questions without a clear problem statement are not useful to other readers. See: How to create a Minimal, Complete, and Verifiable example." – G. Grothendieck, phiver, jogo, Rui Barradas

If this question can be reworded to fit the rules in the help center, please edit the question.












  • what's "stuff.matrix"? Can you make a reproducible example (maybe fill some matrices with random numbers) so we can cut and paste and duplicate your error?
    – Spacedman
    Nov 10 at 18:24










  • hint: try each bit of the T2 calculation to narrow down where the problem is.
    – Spacedman
    Nov 10 at 18:30


















  • what's "stuff.matrix"? Can you make a reproducible example (maybe fill some matrices with random numbers) so we can cut and paste and duplicate your error?
    – Spacedman
    Nov 10 at 18:24










  • hint: try each bit of the T2 calculation to narrow down where the problem is.
    – Spacedman
    Nov 10 at 18:30
















what's "stuff.matrix"? Can you make a reproducible example (maybe fill some matrices with random numbers) so we can cut and paste and duplicate your error?
– Spacedman
Nov 10 at 18:24




what's "stuff.matrix"? Can you make a reproducible example (maybe fill some matrices with random numbers) so we can cut and paste and duplicate your error?
– Spacedman
Nov 10 at 18:24












hint: try each bit of the T2 calculation to narrow down where the problem is.
– Spacedman
Nov 10 at 18:30




hint: try each bit of the T2 calculation to narrow down where the problem is.
– Spacedman
Nov 10 at 18:30












2 Answers
2






active

oldest

votes

















up vote
1
down vote













Your matrices/vectors cant be multiplied at certain steps because of their dimensions. For this I'm assuming the dimensions of Y is actually 250x10, otherwise you'll get a completely different error than the one you're describing (i.e. you won't be able to calculate Ybar-u)



See the breakdown of the T2 calculation:



n*t(Ybar-u) gives you a 10x1 vector



but solve(S) gives you a 10x10 matrix



so you have to transpose the vector before you calculate the product:



t(n*t(Ybar-u)) %*% solve(S)



That then results in a 1x10



But the last part, (Ybar-u) is also a 1x10, so you need to transpose that before you multiply by the previous bit



The following, then, should give you your T2 value:



t(n*t(Ybar-u)) %*% solve(S) %*% t(Ybar-u)






share|improve this answer






























    up vote
    1
    down vote













    Remember the formula



    enter image description here



    with



    enter image description here,



    enter image description here, and



    enter image description here



    sample mean vector and null mean vector should be column vector, not row vector. In your code, I think u <- c(), rather than cbind(). cbind() makes row vector. For detail,



    mu <- 1:10 # just in vector form, not cbind
    n <- 250

    library(foreach)
    set.seed(100)
    stuff_matrix <-
    foreach(mean = mu, .combine = cbind) %do% {
    rnorm(n, mean = mean) # 10x250 matrix, j-th column population mean = j
    }

    head(stuff_matrix)
    #> result.1 result.2 result.3 result.4 result.5 result.6 result.7
    #> [1,] 0.4978076 1.228592 1.553713 3.944082 6.097650 4.516851 5.847401
    #> [2,] 1.1315312 1.492658 3.315856 3.627955 6.181037 7.471557 7.464161
    #> [3,] 0.9210829 1.729977 2.657252 4.474300 5.587511 6.156381 7.728932
    #> [4,] 1.8867848 2.748117 1.068647 3.938295 6.076173 6.115914 7.410617
    #> [5,] 1.1169713 2.668594 3.242821 1.872311 6.136653 6.478609 5.538853
    #> [6,] 1.3186301 1.544701 2.637232 2.997763 5.760293 7.493758 6.981092
    #> result.8 result.9 result.10
    #> [1,] 8.376403 10.348863 11.785226
    #> [2,] 6.621152 8.770257 9.481647
    #> [3,] 7.539515 7.267515 10.253921
    #> [4,] 8.423786 8.372691 8.902402
    #> [5,] 7.994807 8.759492 10.128915
    #> [6,] 7.690636 7.662423 12.078510


    Then the sample mean vector:



    (Ybar <- colMeans(stuff_matrix))
    #> result.1 result.2 result.3 result.4 result.5 result.6 result.7
    #> 0.988688 1.936097 3.055288 4.087147 4.990908 5.986308 6.990446
    #> result.8 result.9 result.10
    #> 8.048926 8.976961 9.995163


    and covariance matrix:



    (S <- var(stuff_matrix))
    #> result.1 result.2 result.3 result.4 result.5
    #> result.1 0.92858045 -0.023293593 -0.024779065 -0.08134832 0.016999154
    #> result.2 -0.02329359 1.093821723 -0.029355823 0.00390076 0.019511651
    #> result.3 -0.02477907 -0.029355823 1.065980338 -0.04811192 0.008041174
    #> result.4 -0.08134832 0.003900760 -0.048111921 1.15907162 -0.116626977
    #> result.5 0.01699915 0.019511651 0.008041174 -0.11662698 0.925901216
    #> result.6 0.00890253 0.022505728 0.050931240 0.04569653 0.058137013
    #> result.7 0.12743198 -0.049968418 -0.005315344 -0.05691760 -0.012378235
    #> result.8 -0.05746120 0.081199620 -0.065209860 0.01852119 -0.096882114
    #> result.9 -0.02708189 -0.006763137 -0.086584652 0.03334430 -0.004256071
    #> result.10 0.02440036 -0.035886159 -0.052768514 0.04605898 0.026418037
    #> result.6 result.7 result.8 result.9 result.10
    #> result.1 0.008902530 0.127431979 -0.057461196 -0.027081892 0.02440036
    #> result.2 0.022505728 -0.049968418 0.081199620 -0.006763137 -0.03588616
    #> result.3 0.050931240 -0.005315344 -0.065209860 -0.086584652 -0.05276851
    #> result.4 0.045696527 -0.056917597 0.018521188 0.033344299 0.04605898
    #> result.5 0.058137013 -0.012378235 -0.096882114 -0.004256071 0.02641804
    #> result.6 1.053106430 0.022910130 0.003415378 -0.036031419 -0.14352911
    #> result.7 0.022910130 1.033750387 0.044022251 -0.045046275 0.13470016
    #> result.8 0.003415378 0.044022251 0.845688387 0.053563920 -0.07633182
    #> result.9 -0.036031419 -0.045046275 0.053563920 1.058638250 0.01074519
    #> result.10 -0.143529114 0.134700158 -0.076331823 0.010745193 1.14241143


    Calculating Hotelling's T-square



    n * t(Ybar - mu) %*% solve(S) %*% (Ybar - mu)
    #> [,1]
    #> [1,] 4.567061


    Since mu is vector, the T2 has been calculated.






    share|improve this answer




























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      1
      down vote













      Your matrices/vectors cant be multiplied at certain steps because of their dimensions. For this I'm assuming the dimensions of Y is actually 250x10, otherwise you'll get a completely different error than the one you're describing (i.e. you won't be able to calculate Ybar-u)



      See the breakdown of the T2 calculation:



      n*t(Ybar-u) gives you a 10x1 vector



      but solve(S) gives you a 10x10 matrix



      so you have to transpose the vector before you calculate the product:



      t(n*t(Ybar-u)) %*% solve(S)



      That then results in a 1x10



      But the last part, (Ybar-u) is also a 1x10, so you need to transpose that before you multiply by the previous bit



      The following, then, should give you your T2 value:



      t(n*t(Ybar-u)) %*% solve(S) %*% t(Ybar-u)






      share|improve this answer



























        up vote
        1
        down vote













        Your matrices/vectors cant be multiplied at certain steps because of their dimensions. For this I'm assuming the dimensions of Y is actually 250x10, otherwise you'll get a completely different error than the one you're describing (i.e. you won't be able to calculate Ybar-u)



        See the breakdown of the T2 calculation:



        n*t(Ybar-u) gives you a 10x1 vector



        but solve(S) gives you a 10x10 matrix



        so you have to transpose the vector before you calculate the product:



        t(n*t(Ybar-u)) %*% solve(S)



        That then results in a 1x10



        But the last part, (Ybar-u) is also a 1x10, so you need to transpose that before you multiply by the previous bit



        The following, then, should give you your T2 value:



        t(n*t(Ybar-u)) %*% solve(S) %*% t(Ybar-u)






        share|improve this answer

























          up vote
          1
          down vote










          up vote
          1
          down vote









          Your matrices/vectors cant be multiplied at certain steps because of their dimensions. For this I'm assuming the dimensions of Y is actually 250x10, otherwise you'll get a completely different error than the one you're describing (i.e. you won't be able to calculate Ybar-u)



          See the breakdown of the T2 calculation:



          n*t(Ybar-u) gives you a 10x1 vector



          but solve(S) gives you a 10x10 matrix



          so you have to transpose the vector before you calculate the product:



          t(n*t(Ybar-u)) %*% solve(S)



          That then results in a 1x10



          But the last part, (Ybar-u) is also a 1x10, so you need to transpose that before you multiply by the previous bit



          The following, then, should give you your T2 value:



          t(n*t(Ybar-u)) %*% solve(S) %*% t(Ybar-u)






          share|improve this answer














          Your matrices/vectors cant be multiplied at certain steps because of their dimensions. For this I'm assuming the dimensions of Y is actually 250x10, otherwise you'll get a completely different error than the one you're describing (i.e. you won't be able to calculate Ybar-u)



          See the breakdown of the T2 calculation:



          n*t(Ybar-u) gives you a 10x1 vector



          but solve(S) gives you a 10x10 matrix



          so you have to transpose the vector before you calculate the product:



          t(n*t(Ybar-u)) %*% solve(S)



          That then results in a 1x10



          But the last part, (Ybar-u) is also a 1x10, so you need to transpose that before you multiply by the previous bit



          The following, then, should give you your T2 value:



          t(n*t(Ybar-u)) %*% solve(S) %*% t(Ybar-u)







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Nov 11 at 1:42

























          answered Nov 10 at 23:04









          Simon

          4,11863070




          4,11863070
























              up vote
              1
              down vote













              Remember the formula



              enter image description here



              with



              enter image description here,



              enter image description here, and



              enter image description here



              sample mean vector and null mean vector should be column vector, not row vector. In your code, I think u <- c(), rather than cbind(). cbind() makes row vector. For detail,



              mu <- 1:10 # just in vector form, not cbind
              n <- 250

              library(foreach)
              set.seed(100)
              stuff_matrix <-
              foreach(mean = mu, .combine = cbind) %do% {
              rnorm(n, mean = mean) # 10x250 matrix, j-th column population mean = j
              }

              head(stuff_matrix)
              #> result.1 result.2 result.3 result.4 result.5 result.6 result.7
              #> [1,] 0.4978076 1.228592 1.553713 3.944082 6.097650 4.516851 5.847401
              #> [2,] 1.1315312 1.492658 3.315856 3.627955 6.181037 7.471557 7.464161
              #> [3,] 0.9210829 1.729977 2.657252 4.474300 5.587511 6.156381 7.728932
              #> [4,] 1.8867848 2.748117 1.068647 3.938295 6.076173 6.115914 7.410617
              #> [5,] 1.1169713 2.668594 3.242821 1.872311 6.136653 6.478609 5.538853
              #> [6,] 1.3186301 1.544701 2.637232 2.997763 5.760293 7.493758 6.981092
              #> result.8 result.9 result.10
              #> [1,] 8.376403 10.348863 11.785226
              #> [2,] 6.621152 8.770257 9.481647
              #> [3,] 7.539515 7.267515 10.253921
              #> [4,] 8.423786 8.372691 8.902402
              #> [5,] 7.994807 8.759492 10.128915
              #> [6,] 7.690636 7.662423 12.078510


              Then the sample mean vector:



              (Ybar <- colMeans(stuff_matrix))
              #> result.1 result.2 result.3 result.4 result.5 result.6 result.7
              #> 0.988688 1.936097 3.055288 4.087147 4.990908 5.986308 6.990446
              #> result.8 result.9 result.10
              #> 8.048926 8.976961 9.995163


              and covariance matrix:



              (S <- var(stuff_matrix))
              #> result.1 result.2 result.3 result.4 result.5
              #> result.1 0.92858045 -0.023293593 -0.024779065 -0.08134832 0.016999154
              #> result.2 -0.02329359 1.093821723 -0.029355823 0.00390076 0.019511651
              #> result.3 -0.02477907 -0.029355823 1.065980338 -0.04811192 0.008041174
              #> result.4 -0.08134832 0.003900760 -0.048111921 1.15907162 -0.116626977
              #> result.5 0.01699915 0.019511651 0.008041174 -0.11662698 0.925901216
              #> result.6 0.00890253 0.022505728 0.050931240 0.04569653 0.058137013
              #> result.7 0.12743198 -0.049968418 -0.005315344 -0.05691760 -0.012378235
              #> result.8 -0.05746120 0.081199620 -0.065209860 0.01852119 -0.096882114
              #> result.9 -0.02708189 -0.006763137 -0.086584652 0.03334430 -0.004256071
              #> result.10 0.02440036 -0.035886159 -0.052768514 0.04605898 0.026418037
              #> result.6 result.7 result.8 result.9 result.10
              #> result.1 0.008902530 0.127431979 -0.057461196 -0.027081892 0.02440036
              #> result.2 0.022505728 -0.049968418 0.081199620 -0.006763137 -0.03588616
              #> result.3 0.050931240 -0.005315344 -0.065209860 -0.086584652 -0.05276851
              #> result.4 0.045696527 -0.056917597 0.018521188 0.033344299 0.04605898
              #> result.5 0.058137013 -0.012378235 -0.096882114 -0.004256071 0.02641804
              #> result.6 1.053106430 0.022910130 0.003415378 -0.036031419 -0.14352911
              #> result.7 0.022910130 1.033750387 0.044022251 -0.045046275 0.13470016
              #> result.8 0.003415378 0.044022251 0.845688387 0.053563920 -0.07633182
              #> result.9 -0.036031419 -0.045046275 0.053563920 1.058638250 0.01074519
              #> result.10 -0.143529114 0.134700158 -0.076331823 0.010745193 1.14241143


              Calculating Hotelling's T-square



              n * t(Ybar - mu) %*% solve(S) %*% (Ybar - mu)
              #> [,1]
              #> [1,] 4.567061


              Since mu is vector, the T2 has been calculated.






              share|improve this answer

























                up vote
                1
                down vote













                Remember the formula



                enter image description here



                with



                enter image description here,



                enter image description here, and



                enter image description here



                sample mean vector and null mean vector should be column vector, not row vector. In your code, I think u <- c(), rather than cbind(). cbind() makes row vector. For detail,



                mu <- 1:10 # just in vector form, not cbind
                n <- 250

                library(foreach)
                set.seed(100)
                stuff_matrix <-
                foreach(mean = mu, .combine = cbind) %do% {
                rnorm(n, mean = mean) # 10x250 matrix, j-th column population mean = j
                }

                head(stuff_matrix)
                #> result.1 result.2 result.3 result.4 result.5 result.6 result.7
                #> [1,] 0.4978076 1.228592 1.553713 3.944082 6.097650 4.516851 5.847401
                #> [2,] 1.1315312 1.492658 3.315856 3.627955 6.181037 7.471557 7.464161
                #> [3,] 0.9210829 1.729977 2.657252 4.474300 5.587511 6.156381 7.728932
                #> [4,] 1.8867848 2.748117 1.068647 3.938295 6.076173 6.115914 7.410617
                #> [5,] 1.1169713 2.668594 3.242821 1.872311 6.136653 6.478609 5.538853
                #> [6,] 1.3186301 1.544701 2.637232 2.997763 5.760293 7.493758 6.981092
                #> result.8 result.9 result.10
                #> [1,] 8.376403 10.348863 11.785226
                #> [2,] 6.621152 8.770257 9.481647
                #> [3,] 7.539515 7.267515 10.253921
                #> [4,] 8.423786 8.372691 8.902402
                #> [5,] 7.994807 8.759492 10.128915
                #> [6,] 7.690636 7.662423 12.078510


                Then the sample mean vector:



                (Ybar <- colMeans(stuff_matrix))
                #> result.1 result.2 result.3 result.4 result.5 result.6 result.7
                #> 0.988688 1.936097 3.055288 4.087147 4.990908 5.986308 6.990446
                #> result.8 result.9 result.10
                #> 8.048926 8.976961 9.995163


                and covariance matrix:



                (S <- var(stuff_matrix))
                #> result.1 result.2 result.3 result.4 result.5
                #> result.1 0.92858045 -0.023293593 -0.024779065 -0.08134832 0.016999154
                #> result.2 -0.02329359 1.093821723 -0.029355823 0.00390076 0.019511651
                #> result.3 -0.02477907 -0.029355823 1.065980338 -0.04811192 0.008041174
                #> result.4 -0.08134832 0.003900760 -0.048111921 1.15907162 -0.116626977
                #> result.5 0.01699915 0.019511651 0.008041174 -0.11662698 0.925901216
                #> result.6 0.00890253 0.022505728 0.050931240 0.04569653 0.058137013
                #> result.7 0.12743198 -0.049968418 -0.005315344 -0.05691760 -0.012378235
                #> result.8 -0.05746120 0.081199620 -0.065209860 0.01852119 -0.096882114
                #> result.9 -0.02708189 -0.006763137 -0.086584652 0.03334430 -0.004256071
                #> result.10 0.02440036 -0.035886159 -0.052768514 0.04605898 0.026418037
                #> result.6 result.7 result.8 result.9 result.10
                #> result.1 0.008902530 0.127431979 -0.057461196 -0.027081892 0.02440036
                #> result.2 0.022505728 -0.049968418 0.081199620 -0.006763137 -0.03588616
                #> result.3 0.050931240 -0.005315344 -0.065209860 -0.086584652 -0.05276851
                #> result.4 0.045696527 -0.056917597 0.018521188 0.033344299 0.04605898
                #> result.5 0.058137013 -0.012378235 -0.096882114 -0.004256071 0.02641804
                #> result.6 1.053106430 0.022910130 0.003415378 -0.036031419 -0.14352911
                #> result.7 0.022910130 1.033750387 0.044022251 -0.045046275 0.13470016
                #> result.8 0.003415378 0.044022251 0.845688387 0.053563920 -0.07633182
                #> result.9 -0.036031419 -0.045046275 0.053563920 1.058638250 0.01074519
                #> result.10 -0.143529114 0.134700158 -0.076331823 0.010745193 1.14241143


                Calculating Hotelling's T-square



                n * t(Ybar - mu) %*% solve(S) %*% (Ybar - mu)
                #> [,1]
                #> [1,] 4.567061


                Since mu is vector, the T2 has been calculated.






                share|improve this answer























                  up vote
                  1
                  down vote










                  up vote
                  1
                  down vote









                  Remember the formula



                  enter image description here



                  with



                  enter image description here,



                  enter image description here, and



                  enter image description here



                  sample mean vector and null mean vector should be column vector, not row vector. In your code, I think u <- c(), rather than cbind(). cbind() makes row vector. For detail,



                  mu <- 1:10 # just in vector form, not cbind
                  n <- 250

                  library(foreach)
                  set.seed(100)
                  stuff_matrix <-
                  foreach(mean = mu, .combine = cbind) %do% {
                  rnorm(n, mean = mean) # 10x250 matrix, j-th column population mean = j
                  }

                  head(stuff_matrix)
                  #> result.1 result.2 result.3 result.4 result.5 result.6 result.7
                  #> [1,] 0.4978076 1.228592 1.553713 3.944082 6.097650 4.516851 5.847401
                  #> [2,] 1.1315312 1.492658 3.315856 3.627955 6.181037 7.471557 7.464161
                  #> [3,] 0.9210829 1.729977 2.657252 4.474300 5.587511 6.156381 7.728932
                  #> [4,] 1.8867848 2.748117 1.068647 3.938295 6.076173 6.115914 7.410617
                  #> [5,] 1.1169713 2.668594 3.242821 1.872311 6.136653 6.478609 5.538853
                  #> [6,] 1.3186301 1.544701 2.637232 2.997763 5.760293 7.493758 6.981092
                  #> result.8 result.9 result.10
                  #> [1,] 8.376403 10.348863 11.785226
                  #> [2,] 6.621152 8.770257 9.481647
                  #> [3,] 7.539515 7.267515 10.253921
                  #> [4,] 8.423786 8.372691 8.902402
                  #> [5,] 7.994807 8.759492 10.128915
                  #> [6,] 7.690636 7.662423 12.078510


                  Then the sample mean vector:



                  (Ybar <- colMeans(stuff_matrix))
                  #> result.1 result.2 result.3 result.4 result.5 result.6 result.7
                  #> 0.988688 1.936097 3.055288 4.087147 4.990908 5.986308 6.990446
                  #> result.8 result.9 result.10
                  #> 8.048926 8.976961 9.995163


                  and covariance matrix:



                  (S <- var(stuff_matrix))
                  #> result.1 result.2 result.3 result.4 result.5
                  #> result.1 0.92858045 -0.023293593 -0.024779065 -0.08134832 0.016999154
                  #> result.2 -0.02329359 1.093821723 -0.029355823 0.00390076 0.019511651
                  #> result.3 -0.02477907 -0.029355823 1.065980338 -0.04811192 0.008041174
                  #> result.4 -0.08134832 0.003900760 -0.048111921 1.15907162 -0.116626977
                  #> result.5 0.01699915 0.019511651 0.008041174 -0.11662698 0.925901216
                  #> result.6 0.00890253 0.022505728 0.050931240 0.04569653 0.058137013
                  #> result.7 0.12743198 -0.049968418 -0.005315344 -0.05691760 -0.012378235
                  #> result.8 -0.05746120 0.081199620 -0.065209860 0.01852119 -0.096882114
                  #> result.9 -0.02708189 -0.006763137 -0.086584652 0.03334430 -0.004256071
                  #> result.10 0.02440036 -0.035886159 -0.052768514 0.04605898 0.026418037
                  #> result.6 result.7 result.8 result.9 result.10
                  #> result.1 0.008902530 0.127431979 -0.057461196 -0.027081892 0.02440036
                  #> result.2 0.022505728 -0.049968418 0.081199620 -0.006763137 -0.03588616
                  #> result.3 0.050931240 -0.005315344 -0.065209860 -0.086584652 -0.05276851
                  #> result.4 0.045696527 -0.056917597 0.018521188 0.033344299 0.04605898
                  #> result.5 0.058137013 -0.012378235 -0.096882114 -0.004256071 0.02641804
                  #> result.6 1.053106430 0.022910130 0.003415378 -0.036031419 -0.14352911
                  #> result.7 0.022910130 1.033750387 0.044022251 -0.045046275 0.13470016
                  #> result.8 0.003415378 0.044022251 0.845688387 0.053563920 -0.07633182
                  #> result.9 -0.036031419 -0.045046275 0.053563920 1.058638250 0.01074519
                  #> result.10 -0.143529114 0.134700158 -0.076331823 0.010745193 1.14241143


                  Calculating Hotelling's T-square



                  n * t(Ybar - mu) %*% solve(S) %*% (Ybar - mu)
                  #> [,1]
                  #> [1,] 4.567061


                  Since mu is vector, the T2 has been calculated.






                  share|improve this answer












                  Remember the formula



                  enter image description here



                  with



                  enter image description here,



                  enter image description here, and



                  enter image description here



                  sample mean vector and null mean vector should be column vector, not row vector. In your code, I think u <- c(), rather than cbind(). cbind() makes row vector. For detail,



                  mu <- 1:10 # just in vector form, not cbind
                  n <- 250

                  library(foreach)
                  set.seed(100)
                  stuff_matrix <-
                  foreach(mean = mu, .combine = cbind) %do% {
                  rnorm(n, mean = mean) # 10x250 matrix, j-th column population mean = j
                  }

                  head(stuff_matrix)
                  #> result.1 result.2 result.3 result.4 result.5 result.6 result.7
                  #> [1,] 0.4978076 1.228592 1.553713 3.944082 6.097650 4.516851 5.847401
                  #> [2,] 1.1315312 1.492658 3.315856 3.627955 6.181037 7.471557 7.464161
                  #> [3,] 0.9210829 1.729977 2.657252 4.474300 5.587511 6.156381 7.728932
                  #> [4,] 1.8867848 2.748117 1.068647 3.938295 6.076173 6.115914 7.410617
                  #> [5,] 1.1169713 2.668594 3.242821 1.872311 6.136653 6.478609 5.538853
                  #> [6,] 1.3186301 1.544701 2.637232 2.997763 5.760293 7.493758 6.981092
                  #> result.8 result.9 result.10
                  #> [1,] 8.376403 10.348863 11.785226
                  #> [2,] 6.621152 8.770257 9.481647
                  #> [3,] 7.539515 7.267515 10.253921
                  #> [4,] 8.423786 8.372691 8.902402
                  #> [5,] 7.994807 8.759492 10.128915
                  #> [6,] 7.690636 7.662423 12.078510


                  Then the sample mean vector:



                  (Ybar <- colMeans(stuff_matrix))
                  #> result.1 result.2 result.3 result.4 result.5 result.6 result.7
                  #> 0.988688 1.936097 3.055288 4.087147 4.990908 5.986308 6.990446
                  #> result.8 result.9 result.10
                  #> 8.048926 8.976961 9.995163


                  and covariance matrix:



                  (S <- var(stuff_matrix))
                  #> result.1 result.2 result.3 result.4 result.5
                  #> result.1 0.92858045 -0.023293593 -0.024779065 -0.08134832 0.016999154
                  #> result.2 -0.02329359 1.093821723 -0.029355823 0.00390076 0.019511651
                  #> result.3 -0.02477907 -0.029355823 1.065980338 -0.04811192 0.008041174
                  #> result.4 -0.08134832 0.003900760 -0.048111921 1.15907162 -0.116626977
                  #> result.5 0.01699915 0.019511651 0.008041174 -0.11662698 0.925901216
                  #> result.6 0.00890253 0.022505728 0.050931240 0.04569653 0.058137013
                  #> result.7 0.12743198 -0.049968418 -0.005315344 -0.05691760 -0.012378235
                  #> result.8 -0.05746120 0.081199620 -0.065209860 0.01852119 -0.096882114
                  #> result.9 -0.02708189 -0.006763137 -0.086584652 0.03334430 -0.004256071
                  #> result.10 0.02440036 -0.035886159 -0.052768514 0.04605898 0.026418037
                  #> result.6 result.7 result.8 result.9 result.10
                  #> result.1 0.008902530 0.127431979 -0.057461196 -0.027081892 0.02440036
                  #> result.2 0.022505728 -0.049968418 0.081199620 -0.006763137 -0.03588616
                  #> result.3 0.050931240 -0.005315344 -0.065209860 -0.086584652 -0.05276851
                  #> result.4 0.045696527 -0.056917597 0.018521188 0.033344299 0.04605898
                  #> result.5 0.058137013 -0.012378235 -0.096882114 -0.004256071 0.02641804
                  #> result.6 1.053106430 0.022910130 0.003415378 -0.036031419 -0.14352911
                  #> result.7 0.022910130 1.033750387 0.044022251 -0.045046275 0.13470016
                  #> result.8 0.003415378 0.044022251 0.845688387 0.053563920 -0.07633182
                  #> result.9 -0.036031419 -0.045046275 0.053563920 1.058638250 0.01074519
                  #> result.10 -0.143529114 0.134700158 -0.076331823 0.010745193 1.14241143


                  Calculating Hotelling's T-square



                  n * t(Ybar - mu) %*% solve(S) %*% (Ybar - mu)
                  #> [,1]
                  #> [1,] 4.567061


                  Since mu is vector, the T2 has been calculated.







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered Nov 11 at 10:43









                  Blended

                  38117




                  38117















                      Popular posts from this blog

                      Florida Star v. B. J. F.

                      Danny Elfman

                      Lugert, Oklahoma