Implementing Cyrus Beck algorithm for convex polygons












1















I tried implementing the Cyrus Beck algorithm for convex polygons. The problem that I was encountering was to find the direction of normal vectors as they must always point inside. For solving this I found the coordinates of the centroid, which always lie inside a convex polygon. This method seems to work in the cases I tested. Is this fool proof ? Are there any better alternatives ?



CyrusBeck.cpp



#include<iostream>
#include<cmath>
#include"graphics.hpp"

#define P pair<double, double>

vector<P> V, N;
P C;

double dot(P A, P B){
return (A.first*B.first + A.second*B.second);
}

P operator - (const P &A, const P &B){
return make_pair(A.first-B.first, A.second-B.second);
}

P operator + (const P &A, const P &B){
return make_pair(A.first+B.first, A.second+B.second);
}

P operator * (const P &A, const double t){
return make_pair(t*A.first, t*A.second);
}

void computeNormal(int n = V.size()){
double m;
P prev = V[0];
double x=-1, y;
for(int i=1; i<n; ++i){
m = -(V[i].first-prev.first)/(V[i].second-prev.second);
P d = V[i]-prev;
int lr=1, tb=1;
if(V[i-1].first>C.first)
lr = -1;
if(V[i-1].second>C.second)
tb=-1;
N[i-1].first = lr*abs(cos(atan(m)));
N[i-1].second = tb*abs(sin(atan(m)));
prev = V[i];
}
m = -(V[0].first-prev.first)/(V[0].second-prev.second);
int lr=1, tb=1;
if(V[n-1].first>C.first)
lr = -1;
if(V[n-1].second>C.second)
tb=-1;
N[n-1].first = lr*abs(cos(atan(m)));
N[n-1].second = tb*abs(sin(atan(m)));
}

int check(P A, P B, int n){
P p = B - V[0];
double d1 = dot(p, N[0]);
P q = A - V[0];
double d2 = dot(q, N[0]);
if(d1<0&&d2<0)
return 0;
if(d1>=0&&d2>=0)
return 1;
return -1;
}

void Clip(P A, P B, double &tE, double &tL, int n = V.size()){
tE = 0; tL = 1;
for(int i=0; i<n; ++i){
double d = dot((B-A), N[i]);
if(d==0)
continue;
double t = dot((A-V[i]), N[i])/dot((A-B), N[i]);
if(d>0&&t>tE)
tE = t;
else if(d<0&&t<tL)
tL = t;
}
}

void display(){
cout<<"Enter the number of verticesn";
int n; cin>>n;
V.resize(n);
N.resize(n);
cout<<"Enter the coordinates of the vertices in ordern";
for(int i=0; i<n; ++i){
cin>>V[i].first>>V[i].second;
C = C + V[i];
}
C.first/=n; C.second/=n;
drawPolygon(V, n, white);
glutSwapBuffers();
cout<<"Enter the co-ordinates of the line(4)n";
P A, B;
cin>>A.first>>A.second>>B.first>>B.second;
drawLine(A.first, A.second, B.first, B.second, red);
glutSwapBuffers();
char c = '';
while(c!='Y'&&c!='y'){
cout<<"Clip? (Y/N)n";
cin>>c;
}
computeNormal();
int chk = check(A, B, n);
glClearColor(0, 0, 0, 1);
glClear(GL_COLOR_BUFFER_BIT);
drawPolygon(V, n, white);
if(chk==-1){
double tE, tL;
Clip(A, B, tE, tL);
if(tE>tL)
chk = 0;
else{
P E = A + (B-A)*tE;
P L = A + (B-A)*tL;
drawLine(E.first, E.second, L.first, L.second, blue);
}
}
if(chk==1)
drawLine(A.first, A.second, B.first, B.second, blue);
glutSwapBuffers();
}

int main(int argc, char *argv){
init(&argc, argv);
}


graphics.hpp



#ifndef GRAPHICS_H
#define GRAPHICS_H

#include<GL/glut.h>
#include<vector>
using namespace std;

extern float red[3];
extern float green[3];
extern float blue[3];
extern float white[3];

int roundoff(double x);
void init(int* argc, char** argv);
void putpixel(float x, float y, float z, float a[3]);
void drawLine(double x1, double y1, double x2, double y2, float a[3]);
void drawRectangle(double x1, double y1, double x2, double y2, float a[3]);
void drawPolygon(vector<pair<double, double>> v, int n, float a[3]);
void MatrixMultiply(vector<vector<double>> &mat1, vector<vector<double>> &mat2, vector<vector<double>> &res,
int n, int m, int r);
void display();

#endif


graphics.cpp



#include<iostream>
#include"graphics.hpp"

float red[3] = { 1.0f, 0.0f, 0.0f };
float green[3] = { 0.0f, 1.0f, 0.0f };
float blue[3] = { 0.0f, 0.0f, 1.0f };
float white[3] = { 1.0f, 1.0f, 1.0f };

int roundoff(double x){
if (x < 0.0)
return (int)(x - 0.5);
else
return (int)(x + 0.5);
}

void init(int *argc, char** argv){
glutInit(argc, argv); // Initialize GLUT
glutInitWindowSize(800, 800); // Set the window's initial width & height
glutInitWindowPosition(0, 0); // Position the window's initial top-left corner
glutCreateWindow("Graphics"); // Create a window with the given title
gluOrtho2D(0, 800, 0, 800); // specifies the projection matrix
glClearColor(0.0f, 0.0f, 0.0f, 1.0f); // Set background color to black and opaque
glClear(GL_COLOR_BUFFER_BIT); // Clear the color buffer (background)
glutDisplayFunc(display); // Register display callback handler for window re-paint
glutMainLoop(); // Enter the event-processing loop
}

void putpixel(float x, float y, float z, float a[3]){
glPointSize(2);
glBegin(GL_POINTS); // HERE THE POINTS SHOULD BE CREATED
glColor3f(a[0], a[1], a[2]);
glVertex3f(x, y, z); // Specify points in 3d plane
std::cout<<x<<' '<<y<<' '<<z<<'n';
glEnd();
}

void drawLine(double x1, double y1, double x2, double y2, float a[3]){
glLineWidth(2.5);
glColor3f(a[0], a[1], a[2]);
glBegin(GL_LINES);
glVertex2d(x1, y1);
glVertex2d(x2, y2);
glEnd();
}

void drawRectangle(double x1, double y1, double x2, double y2, float a[3]){
glColor3f(a[0], a[1], a[2]);
glRectd(x1, y1, x2, y2);
}

void drawPolygon(vector<pair<double, double>> v, int n, float a[3]){
glColor3f(a[0], a[1], a[2]);
glBegin(GL_POLYGON);
for(int i=0; i<n; ++i)
glVertex2d(v[i].first, v[i].second);
glEnd();
}

void MatrixMultiply(vector<vector<double>> &mat1, vector<vector<double>> &mat2, vector<vector<double>> &res,
int n, int m, int r){
int x, i, j;
for(i = 0; i < n; i++){
for (j = 0; j < r; j++){
res[i][j] = 0;
for (x = 0; x < m; x++){
res[i][j] += mat1[i][x] * mat2[x][j];
}
}
}
}









share|improve this question























  • perpendicular to line segment. A unit normal will further require scaling.

    – Brett Hale
    Nov 13 '18 at 8:55








  • 1





    Yes, this is bulletproof (as long as the polygon is truly convex). You can also use the shoelace formula to compute the algebraic area.

    – Yves Daoust
    Nov 14 '18 at 10:37
















1















I tried implementing the Cyrus Beck algorithm for convex polygons. The problem that I was encountering was to find the direction of normal vectors as they must always point inside. For solving this I found the coordinates of the centroid, which always lie inside a convex polygon. This method seems to work in the cases I tested. Is this fool proof ? Are there any better alternatives ?



CyrusBeck.cpp



#include<iostream>
#include<cmath>
#include"graphics.hpp"

#define P pair<double, double>

vector<P> V, N;
P C;

double dot(P A, P B){
return (A.first*B.first + A.second*B.second);
}

P operator - (const P &A, const P &B){
return make_pair(A.first-B.first, A.second-B.second);
}

P operator + (const P &A, const P &B){
return make_pair(A.first+B.first, A.second+B.second);
}

P operator * (const P &A, const double t){
return make_pair(t*A.first, t*A.second);
}

void computeNormal(int n = V.size()){
double m;
P prev = V[0];
double x=-1, y;
for(int i=1; i<n; ++i){
m = -(V[i].first-prev.first)/(V[i].second-prev.second);
P d = V[i]-prev;
int lr=1, tb=1;
if(V[i-1].first>C.first)
lr = -1;
if(V[i-1].second>C.second)
tb=-1;
N[i-1].first = lr*abs(cos(atan(m)));
N[i-1].second = tb*abs(sin(atan(m)));
prev = V[i];
}
m = -(V[0].first-prev.first)/(V[0].second-prev.second);
int lr=1, tb=1;
if(V[n-1].first>C.first)
lr = -1;
if(V[n-1].second>C.second)
tb=-1;
N[n-1].first = lr*abs(cos(atan(m)));
N[n-1].second = tb*abs(sin(atan(m)));
}

int check(P A, P B, int n){
P p = B - V[0];
double d1 = dot(p, N[0]);
P q = A - V[0];
double d2 = dot(q, N[0]);
if(d1<0&&d2<0)
return 0;
if(d1>=0&&d2>=0)
return 1;
return -1;
}

void Clip(P A, P B, double &tE, double &tL, int n = V.size()){
tE = 0; tL = 1;
for(int i=0; i<n; ++i){
double d = dot((B-A), N[i]);
if(d==0)
continue;
double t = dot((A-V[i]), N[i])/dot((A-B), N[i]);
if(d>0&&t>tE)
tE = t;
else if(d<0&&t<tL)
tL = t;
}
}

void display(){
cout<<"Enter the number of verticesn";
int n; cin>>n;
V.resize(n);
N.resize(n);
cout<<"Enter the coordinates of the vertices in ordern";
for(int i=0; i<n; ++i){
cin>>V[i].first>>V[i].second;
C = C + V[i];
}
C.first/=n; C.second/=n;
drawPolygon(V, n, white);
glutSwapBuffers();
cout<<"Enter the co-ordinates of the line(4)n";
P A, B;
cin>>A.first>>A.second>>B.first>>B.second;
drawLine(A.first, A.second, B.first, B.second, red);
glutSwapBuffers();
char c = '';
while(c!='Y'&&c!='y'){
cout<<"Clip? (Y/N)n";
cin>>c;
}
computeNormal();
int chk = check(A, B, n);
glClearColor(0, 0, 0, 1);
glClear(GL_COLOR_BUFFER_BIT);
drawPolygon(V, n, white);
if(chk==-1){
double tE, tL;
Clip(A, B, tE, tL);
if(tE>tL)
chk = 0;
else{
P E = A + (B-A)*tE;
P L = A + (B-A)*tL;
drawLine(E.first, E.second, L.first, L.second, blue);
}
}
if(chk==1)
drawLine(A.first, A.second, B.first, B.second, blue);
glutSwapBuffers();
}

int main(int argc, char *argv){
init(&argc, argv);
}


graphics.hpp



#ifndef GRAPHICS_H
#define GRAPHICS_H

#include<GL/glut.h>
#include<vector>
using namespace std;

extern float red[3];
extern float green[3];
extern float blue[3];
extern float white[3];

int roundoff(double x);
void init(int* argc, char** argv);
void putpixel(float x, float y, float z, float a[3]);
void drawLine(double x1, double y1, double x2, double y2, float a[3]);
void drawRectangle(double x1, double y1, double x2, double y2, float a[3]);
void drawPolygon(vector<pair<double, double>> v, int n, float a[3]);
void MatrixMultiply(vector<vector<double>> &mat1, vector<vector<double>> &mat2, vector<vector<double>> &res,
int n, int m, int r);
void display();

#endif


graphics.cpp



#include<iostream>
#include"graphics.hpp"

float red[3] = { 1.0f, 0.0f, 0.0f };
float green[3] = { 0.0f, 1.0f, 0.0f };
float blue[3] = { 0.0f, 0.0f, 1.0f };
float white[3] = { 1.0f, 1.0f, 1.0f };

int roundoff(double x){
if (x < 0.0)
return (int)(x - 0.5);
else
return (int)(x + 0.5);
}

void init(int *argc, char** argv){
glutInit(argc, argv); // Initialize GLUT
glutInitWindowSize(800, 800); // Set the window's initial width & height
glutInitWindowPosition(0, 0); // Position the window's initial top-left corner
glutCreateWindow("Graphics"); // Create a window with the given title
gluOrtho2D(0, 800, 0, 800); // specifies the projection matrix
glClearColor(0.0f, 0.0f, 0.0f, 1.0f); // Set background color to black and opaque
glClear(GL_COLOR_BUFFER_BIT); // Clear the color buffer (background)
glutDisplayFunc(display); // Register display callback handler for window re-paint
glutMainLoop(); // Enter the event-processing loop
}

void putpixel(float x, float y, float z, float a[3]){
glPointSize(2);
glBegin(GL_POINTS); // HERE THE POINTS SHOULD BE CREATED
glColor3f(a[0], a[1], a[2]);
glVertex3f(x, y, z); // Specify points in 3d plane
std::cout<<x<<' '<<y<<' '<<z<<'n';
glEnd();
}

void drawLine(double x1, double y1, double x2, double y2, float a[3]){
glLineWidth(2.5);
glColor3f(a[0], a[1], a[2]);
glBegin(GL_LINES);
glVertex2d(x1, y1);
glVertex2d(x2, y2);
glEnd();
}

void drawRectangle(double x1, double y1, double x2, double y2, float a[3]){
glColor3f(a[0], a[1], a[2]);
glRectd(x1, y1, x2, y2);
}

void drawPolygon(vector<pair<double, double>> v, int n, float a[3]){
glColor3f(a[0], a[1], a[2]);
glBegin(GL_POLYGON);
for(int i=0; i<n; ++i)
glVertex2d(v[i].first, v[i].second);
glEnd();
}

void MatrixMultiply(vector<vector<double>> &mat1, vector<vector<double>> &mat2, vector<vector<double>> &res,
int n, int m, int r){
int x, i, j;
for(i = 0; i < n; i++){
for (j = 0; j < r; j++){
res[i][j] = 0;
for (x = 0; x < m; x++){
res[i][j] += mat1[i][x] * mat2[x][j];
}
}
}
}









share|improve this question























  • perpendicular to line segment. A unit normal will further require scaling.

    – Brett Hale
    Nov 13 '18 at 8:55








  • 1





    Yes, this is bulletproof (as long as the polygon is truly convex). You can also use the shoelace formula to compute the algebraic area.

    – Yves Daoust
    Nov 14 '18 at 10:37














1












1








1








I tried implementing the Cyrus Beck algorithm for convex polygons. The problem that I was encountering was to find the direction of normal vectors as they must always point inside. For solving this I found the coordinates of the centroid, which always lie inside a convex polygon. This method seems to work in the cases I tested. Is this fool proof ? Are there any better alternatives ?



CyrusBeck.cpp



#include<iostream>
#include<cmath>
#include"graphics.hpp"

#define P pair<double, double>

vector<P> V, N;
P C;

double dot(P A, P B){
return (A.first*B.first + A.second*B.second);
}

P operator - (const P &A, const P &B){
return make_pair(A.first-B.first, A.second-B.second);
}

P operator + (const P &A, const P &B){
return make_pair(A.first+B.first, A.second+B.second);
}

P operator * (const P &A, const double t){
return make_pair(t*A.first, t*A.second);
}

void computeNormal(int n = V.size()){
double m;
P prev = V[0];
double x=-1, y;
for(int i=1; i<n; ++i){
m = -(V[i].first-prev.first)/(V[i].second-prev.second);
P d = V[i]-prev;
int lr=1, tb=1;
if(V[i-1].first>C.first)
lr = -1;
if(V[i-1].second>C.second)
tb=-1;
N[i-1].first = lr*abs(cos(atan(m)));
N[i-1].second = tb*abs(sin(atan(m)));
prev = V[i];
}
m = -(V[0].first-prev.first)/(V[0].second-prev.second);
int lr=1, tb=1;
if(V[n-1].first>C.first)
lr = -1;
if(V[n-1].second>C.second)
tb=-1;
N[n-1].first = lr*abs(cos(atan(m)));
N[n-1].second = tb*abs(sin(atan(m)));
}

int check(P A, P B, int n){
P p = B - V[0];
double d1 = dot(p, N[0]);
P q = A - V[0];
double d2 = dot(q, N[0]);
if(d1<0&&d2<0)
return 0;
if(d1>=0&&d2>=0)
return 1;
return -1;
}

void Clip(P A, P B, double &tE, double &tL, int n = V.size()){
tE = 0; tL = 1;
for(int i=0; i<n; ++i){
double d = dot((B-A), N[i]);
if(d==0)
continue;
double t = dot((A-V[i]), N[i])/dot((A-B), N[i]);
if(d>0&&t>tE)
tE = t;
else if(d<0&&t<tL)
tL = t;
}
}

void display(){
cout<<"Enter the number of verticesn";
int n; cin>>n;
V.resize(n);
N.resize(n);
cout<<"Enter the coordinates of the vertices in ordern";
for(int i=0; i<n; ++i){
cin>>V[i].first>>V[i].second;
C = C + V[i];
}
C.first/=n; C.second/=n;
drawPolygon(V, n, white);
glutSwapBuffers();
cout<<"Enter the co-ordinates of the line(4)n";
P A, B;
cin>>A.first>>A.second>>B.first>>B.second;
drawLine(A.first, A.second, B.first, B.second, red);
glutSwapBuffers();
char c = '';
while(c!='Y'&&c!='y'){
cout<<"Clip? (Y/N)n";
cin>>c;
}
computeNormal();
int chk = check(A, B, n);
glClearColor(0, 0, 0, 1);
glClear(GL_COLOR_BUFFER_BIT);
drawPolygon(V, n, white);
if(chk==-1){
double tE, tL;
Clip(A, B, tE, tL);
if(tE>tL)
chk = 0;
else{
P E = A + (B-A)*tE;
P L = A + (B-A)*tL;
drawLine(E.first, E.second, L.first, L.second, blue);
}
}
if(chk==1)
drawLine(A.first, A.second, B.first, B.second, blue);
glutSwapBuffers();
}

int main(int argc, char *argv){
init(&argc, argv);
}


graphics.hpp



#ifndef GRAPHICS_H
#define GRAPHICS_H

#include<GL/glut.h>
#include<vector>
using namespace std;

extern float red[3];
extern float green[3];
extern float blue[3];
extern float white[3];

int roundoff(double x);
void init(int* argc, char** argv);
void putpixel(float x, float y, float z, float a[3]);
void drawLine(double x1, double y1, double x2, double y2, float a[3]);
void drawRectangle(double x1, double y1, double x2, double y2, float a[3]);
void drawPolygon(vector<pair<double, double>> v, int n, float a[3]);
void MatrixMultiply(vector<vector<double>> &mat1, vector<vector<double>> &mat2, vector<vector<double>> &res,
int n, int m, int r);
void display();

#endif


graphics.cpp



#include<iostream>
#include"graphics.hpp"

float red[3] = { 1.0f, 0.0f, 0.0f };
float green[3] = { 0.0f, 1.0f, 0.0f };
float blue[3] = { 0.0f, 0.0f, 1.0f };
float white[3] = { 1.0f, 1.0f, 1.0f };

int roundoff(double x){
if (x < 0.0)
return (int)(x - 0.5);
else
return (int)(x + 0.5);
}

void init(int *argc, char** argv){
glutInit(argc, argv); // Initialize GLUT
glutInitWindowSize(800, 800); // Set the window's initial width & height
glutInitWindowPosition(0, 0); // Position the window's initial top-left corner
glutCreateWindow("Graphics"); // Create a window with the given title
gluOrtho2D(0, 800, 0, 800); // specifies the projection matrix
glClearColor(0.0f, 0.0f, 0.0f, 1.0f); // Set background color to black and opaque
glClear(GL_COLOR_BUFFER_BIT); // Clear the color buffer (background)
glutDisplayFunc(display); // Register display callback handler for window re-paint
glutMainLoop(); // Enter the event-processing loop
}

void putpixel(float x, float y, float z, float a[3]){
glPointSize(2);
glBegin(GL_POINTS); // HERE THE POINTS SHOULD BE CREATED
glColor3f(a[0], a[1], a[2]);
glVertex3f(x, y, z); // Specify points in 3d plane
std::cout<<x<<' '<<y<<' '<<z<<'n';
glEnd();
}

void drawLine(double x1, double y1, double x2, double y2, float a[3]){
glLineWidth(2.5);
glColor3f(a[0], a[1], a[2]);
glBegin(GL_LINES);
glVertex2d(x1, y1);
glVertex2d(x2, y2);
glEnd();
}

void drawRectangle(double x1, double y1, double x2, double y2, float a[3]){
glColor3f(a[0], a[1], a[2]);
glRectd(x1, y1, x2, y2);
}

void drawPolygon(vector<pair<double, double>> v, int n, float a[3]){
glColor3f(a[0], a[1], a[2]);
glBegin(GL_POLYGON);
for(int i=0; i<n; ++i)
glVertex2d(v[i].first, v[i].second);
glEnd();
}

void MatrixMultiply(vector<vector<double>> &mat1, vector<vector<double>> &mat2, vector<vector<double>> &res,
int n, int m, int r){
int x, i, j;
for(i = 0; i < n; i++){
for (j = 0; j < r; j++){
res[i][j] = 0;
for (x = 0; x < m; x++){
res[i][j] += mat1[i][x] * mat2[x][j];
}
}
}
}









share|improve this question














I tried implementing the Cyrus Beck algorithm for convex polygons. The problem that I was encountering was to find the direction of normal vectors as they must always point inside. For solving this I found the coordinates of the centroid, which always lie inside a convex polygon. This method seems to work in the cases I tested. Is this fool proof ? Are there any better alternatives ?



CyrusBeck.cpp



#include<iostream>
#include<cmath>
#include"graphics.hpp"

#define P pair<double, double>

vector<P> V, N;
P C;

double dot(P A, P B){
return (A.first*B.first + A.second*B.second);
}

P operator - (const P &A, const P &B){
return make_pair(A.first-B.first, A.second-B.second);
}

P operator + (const P &A, const P &B){
return make_pair(A.first+B.first, A.second+B.second);
}

P operator * (const P &A, const double t){
return make_pair(t*A.first, t*A.second);
}

void computeNormal(int n = V.size()){
double m;
P prev = V[0];
double x=-1, y;
for(int i=1; i<n; ++i){
m = -(V[i].first-prev.first)/(V[i].second-prev.second);
P d = V[i]-prev;
int lr=1, tb=1;
if(V[i-1].first>C.first)
lr = -1;
if(V[i-1].second>C.second)
tb=-1;
N[i-1].first = lr*abs(cos(atan(m)));
N[i-1].second = tb*abs(sin(atan(m)));
prev = V[i];
}
m = -(V[0].first-prev.first)/(V[0].second-prev.second);
int lr=1, tb=1;
if(V[n-1].first>C.first)
lr = -1;
if(V[n-1].second>C.second)
tb=-1;
N[n-1].first = lr*abs(cos(atan(m)));
N[n-1].second = tb*abs(sin(atan(m)));
}

int check(P A, P B, int n){
P p = B - V[0];
double d1 = dot(p, N[0]);
P q = A - V[0];
double d2 = dot(q, N[0]);
if(d1<0&&d2<0)
return 0;
if(d1>=0&&d2>=0)
return 1;
return -1;
}

void Clip(P A, P B, double &tE, double &tL, int n = V.size()){
tE = 0; tL = 1;
for(int i=0; i<n; ++i){
double d = dot((B-A), N[i]);
if(d==0)
continue;
double t = dot((A-V[i]), N[i])/dot((A-B), N[i]);
if(d>0&&t>tE)
tE = t;
else if(d<0&&t<tL)
tL = t;
}
}

void display(){
cout<<"Enter the number of verticesn";
int n; cin>>n;
V.resize(n);
N.resize(n);
cout<<"Enter the coordinates of the vertices in ordern";
for(int i=0; i<n; ++i){
cin>>V[i].first>>V[i].second;
C = C + V[i];
}
C.first/=n; C.second/=n;
drawPolygon(V, n, white);
glutSwapBuffers();
cout<<"Enter the co-ordinates of the line(4)n";
P A, B;
cin>>A.first>>A.second>>B.first>>B.second;
drawLine(A.first, A.second, B.first, B.second, red);
glutSwapBuffers();
char c = '';
while(c!='Y'&&c!='y'){
cout<<"Clip? (Y/N)n";
cin>>c;
}
computeNormal();
int chk = check(A, B, n);
glClearColor(0, 0, 0, 1);
glClear(GL_COLOR_BUFFER_BIT);
drawPolygon(V, n, white);
if(chk==-1){
double tE, tL;
Clip(A, B, tE, tL);
if(tE>tL)
chk = 0;
else{
P E = A + (B-A)*tE;
P L = A + (B-A)*tL;
drawLine(E.first, E.second, L.first, L.second, blue);
}
}
if(chk==1)
drawLine(A.first, A.second, B.first, B.second, blue);
glutSwapBuffers();
}

int main(int argc, char *argv){
init(&argc, argv);
}


graphics.hpp



#ifndef GRAPHICS_H
#define GRAPHICS_H

#include<GL/glut.h>
#include<vector>
using namespace std;

extern float red[3];
extern float green[3];
extern float blue[3];
extern float white[3];

int roundoff(double x);
void init(int* argc, char** argv);
void putpixel(float x, float y, float z, float a[3]);
void drawLine(double x1, double y1, double x2, double y2, float a[3]);
void drawRectangle(double x1, double y1, double x2, double y2, float a[3]);
void drawPolygon(vector<pair<double, double>> v, int n, float a[3]);
void MatrixMultiply(vector<vector<double>> &mat1, vector<vector<double>> &mat2, vector<vector<double>> &res,
int n, int m, int r);
void display();

#endif


graphics.cpp



#include<iostream>
#include"graphics.hpp"

float red[3] = { 1.0f, 0.0f, 0.0f };
float green[3] = { 0.0f, 1.0f, 0.0f };
float blue[3] = { 0.0f, 0.0f, 1.0f };
float white[3] = { 1.0f, 1.0f, 1.0f };

int roundoff(double x){
if (x < 0.0)
return (int)(x - 0.5);
else
return (int)(x + 0.5);
}

void init(int *argc, char** argv){
glutInit(argc, argv); // Initialize GLUT
glutInitWindowSize(800, 800); // Set the window's initial width & height
glutInitWindowPosition(0, 0); // Position the window's initial top-left corner
glutCreateWindow("Graphics"); // Create a window with the given title
gluOrtho2D(0, 800, 0, 800); // specifies the projection matrix
glClearColor(0.0f, 0.0f, 0.0f, 1.0f); // Set background color to black and opaque
glClear(GL_COLOR_BUFFER_BIT); // Clear the color buffer (background)
glutDisplayFunc(display); // Register display callback handler for window re-paint
glutMainLoop(); // Enter the event-processing loop
}

void putpixel(float x, float y, float z, float a[3]){
glPointSize(2);
glBegin(GL_POINTS); // HERE THE POINTS SHOULD BE CREATED
glColor3f(a[0], a[1], a[2]);
glVertex3f(x, y, z); // Specify points in 3d plane
std::cout<<x<<' '<<y<<' '<<z<<'n';
glEnd();
}

void drawLine(double x1, double y1, double x2, double y2, float a[3]){
glLineWidth(2.5);
glColor3f(a[0], a[1], a[2]);
glBegin(GL_LINES);
glVertex2d(x1, y1);
glVertex2d(x2, y2);
glEnd();
}

void drawRectangle(double x1, double y1, double x2, double y2, float a[3]){
glColor3f(a[0], a[1], a[2]);
glRectd(x1, y1, x2, y2);
}

void drawPolygon(vector<pair<double, double>> v, int n, float a[3]){
glColor3f(a[0], a[1], a[2]);
glBegin(GL_POLYGON);
for(int i=0; i<n; ++i)
glVertex2d(v[i].first, v[i].second);
glEnd();
}

void MatrixMultiply(vector<vector<double>> &mat1, vector<vector<double>> &mat2, vector<vector<double>> &res,
int n, int m, int r){
int x, i, j;
for(i = 0; i < n; i++){
for (j = 0; j < r; j++){
res[i][j] = 0;
for (x = 0; x < m; x++){
res[i][j] += mat1[i][x] * mat2[x][j];
}
}
}
}






c++ opengl graphics computational-geometry






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Nov 13 '18 at 8:10









Gaurav PantGaurav Pant

8311




8311













  • perpendicular to line segment. A unit normal will further require scaling.

    – Brett Hale
    Nov 13 '18 at 8:55








  • 1





    Yes, this is bulletproof (as long as the polygon is truly convex). You can also use the shoelace formula to compute the algebraic area.

    – Yves Daoust
    Nov 14 '18 at 10:37



















  • perpendicular to line segment. A unit normal will further require scaling.

    – Brett Hale
    Nov 13 '18 at 8:55








  • 1





    Yes, this is bulletproof (as long as the polygon is truly convex). You can also use the shoelace formula to compute the algebraic area.

    – Yves Daoust
    Nov 14 '18 at 10:37

















perpendicular to line segment. A unit normal will further require scaling.

– Brett Hale
Nov 13 '18 at 8:55







perpendicular to line segment. A unit normal will further require scaling.

– Brett Hale
Nov 13 '18 at 8:55






1




1





Yes, this is bulletproof (as long as the polygon is truly convex). You can also use the shoelace formula to compute the algebraic area.

– Yves Daoust
Nov 14 '18 at 10:37





Yes, this is bulletproof (as long as the polygon is truly convex). You can also use the shoelace formula to compute the algebraic area.

– Yves Daoust
Nov 14 '18 at 10:37












0






active

oldest

votes











Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53276495%2fimplementing-cyrus-beck-algorithm-for-convex-polygons%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53276495%2fimplementing-cyrus-beck-algorithm-for-convex-polygons%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Florida Star v. B. J. F.

Danny Elfman

Lugert, Oklahoma