Validation Accuracy shown during epochs much higher than what I actually get











up vote
0
down vote

favorite












I am new to Keras and CNN and therefore struggling with the following.



When I train using image dataset using the follwing code:



train_batches = gen1.flow_from_directory(train_path, target_size=(224,224),classes = ['garbage', 'recycled', 'organic'], batch_size = batch)    

valid_batches = gen1.flow_from_directory(valid_path, target_size=(224,224), classes = ['garbage', 'recycled', 'organic'], batch_size = batch)

test_batches = gen1.flow_from_directory(test_path, target_size=(224,224), classes = ['garbage', 'recycled', 'organic'], batch_size = batch)

model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=( 224, 224, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(3))
model.add(Activation('softmax'))

model.compile(optimizer=Adam(lr=.0001), loss= 'categorical_crossentropy', metrics = ['accuracy'])

history = model.fit_generator(train_batches, steps_per_epoch =training_data_size//batch, validation_data = valid_batches, validation_steps=validation_data_size//batch, epochs=5, verbose=2)
model.save_weights('Try1.h5')


I get the 77% validation accuracy after 5 epochs as can be seen in the pic :



enter image description here



But when I try to create a confusion matrix for it using I get 35% validation accuracy:



predictions = model.predict_generator(valid_batches, steps=validation_data_size//batch,verbose=1)
conf_mat2 = confusion_matrix(valid_batches.classes, np.argmax(predictions,axis=1))









share|improve this question


























    up vote
    0
    down vote

    favorite












    I am new to Keras and CNN and therefore struggling with the following.



    When I train using image dataset using the follwing code:



    train_batches = gen1.flow_from_directory(train_path, target_size=(224,224),classes = ['garbage', 'recycled', 'organic'], batch_size = batch)    

    valid_batches = gen1.flow_from_directory(valid_path, target_size=(224,224), classes = ['garbage', 'recycled', 'organic'], batch_size = batch)

    test_batches = gen1.flow_from_directory(test_path, target_size=(224,224), classes = ['garbage', 'recycled', 'organic'], batch_size = batch)

    model = Sequential()
    model.add(Conv2D(32, (3, 3), input_shape=( 224, 224, 3)))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Conv2D(32, (3, 3)))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Conv2D(32, (3, 3)))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Conv2D(64, (3, 3)))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Conv2D(64, (3, 3)))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
    model.add(Dense(64))
    model.add(Activation('relu'))
    model.add(Dropout(0.5))
    model.add(Dense(3))
    model.add(Activation('softmax'))

    model.compile(optimizer=Adam(lr=.0001), loss= 'categorical_crossentropy', metrics = ['accuracy'])

    history = model.fit_generator(train_batches, steps_per_epoch =training_data_size//batch, validation_data = valid_batches, validation_steps=validation_data_size//batch, epochs=5, verbose=2)
    model.save_weights('Try1.h5')


    I get the 77% validation accuracy after 5 epochs as can be seen in the pic :



    enter image description here



    But when I try to create a confusion matrix for it using I get 35% validation accuracy:



    predictions = model.predict_generator(valid_batches, steps=validation_data_size//batch,verbose=1)
    conf_mat2 = confusion_matrix(valid_batches.classes, np.argmax(predictions,axis=1))









    share|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      I am new to Keras and CNN and therefore struggling with the following.



      When I train using image dataset using the follwing code:



      train_batches = gen1.flow_from_directory(train_path, target_size=(224,224),classes = ['garbage', 'recycled', 'organic'], batch_size = batch)    

      valid_batches = gen1.flow_from_directory(valid_path, target_size=(224,224), classes = ['garbage', 'recycled', 'organic'], batch_size = batch)

      test_batches = gen1.flow_from_directory(test_path, target_size=(224,224), classes = ['garbage', 'recycled', 'organic'], batch_size = batch)

      model = Sequential()
      model.add(Conv2D(32, (3, 3), input_shape=( 224, 224, 3)))
      model.add(Activation('relu'))
      model.add(MaxPooling2D(pool_size=(2, 2)))

      model.add(Conv2D(32, (3, 3)))
      model.add(Activation('relu'))
      model.add(MaxPooling2D(pool_size=(2, 2)))

      model.add(Conv2D(32, (3, 3)))
      model.add(Activation('relu'))
      model.add(MaxPooling2D(pool_size=(2, 2)))

      model.add(Conv2D(64, (3, 3)))
      model.add(Activation('relu'))
      model.add(MaxPooling2D(pool_size=(2, 2)))

      model.add(Conv2D(64, (3, 3)))
      model.add(Activation('relu'))
      model.add(MaxPooling2D(pool_size=(2, 2)))

      model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
      model.add(Dense(64))
      model.add(Activation('relu'))
      model.add(Dropout(0.5))
      model.add(Dense(3))
      model.add(Activation('softmax'))

      model.compile(optimizer=Adam(lr=.0001), loss= 'categorical_crossentropy', metrics = ['accuracy'])

      history = model.fit_generator(train_batches, steps_per_epoch =training_data_size//batch, validation_data = valid_batches, validation_steps=validation_data_size//batch, epochs=5, verbose=2)
      model.save_weights('Try1.h5')


      I get the 77% validation accuracy after 5 epochs as can be seen in the pic :



      enter image description here



      But when I try to create a confusion matrix for it using I get 35% validation accuracy:



      predictions = model.predict_generator(valid_batches, steps=validation_data_size//batch,verbose=1)
      conf_mat2 = confusion_matrix(valid_batches.classes, np.argmax(predictions,axis=1))









      share|improve this question













      I am new to Keras and CNN and therefore struggling with the following.



      When I train using image dataset using the follwing code:



      train_batches = gen1.flow_from_directory(train_path, target_size=(224,224),classes = ['garbage', 'recycled', 'organic'], batch_size = batch)    

      valid_batches = gen1.flow_from_directory(valid_path, target_size=(224,224), classes = ['garbage', 'recycled', 'organic'], batch_size = batch)

      test_batches = gen1.flow_from_directory(test_path, target_size=(224,224), classes = ['garbage', 'recycled', 'organic'], batch_size = batch)

      model = Sequential()
      model.add(Conv2D(32, (3, 3), input_shape=( 224, 224, 3)))
      model.add(Activation('relu'))
      model.add(MaxPooling2D(pool_size=(2, 2)))

      model.add(Conv2D(32, (3, 3)))
      model.add(Activation('relu'))
      model.add(MaxPooling2D(pool_size=(2, 2)))

      model.add(Conv2D(32, (3, 3)))
      model.add(Activation('relu'))
      model.add(MaxPooling2D(pool_size=(2, 2)))

      model.add(Conv2D(64, (3, 3)))
      model.add(Activation('relu'))
      model.add(MaxPooling2D(pool_size=(2, 2)))

      model.add(Conv2D(64, (3, 3)))
      model.add(Activation('relu'))
      model.add(MaxPooling2D(pool_size=(2, 2)))

      model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
      model.add(Dense(64))
      model.add(Activation('relu'))
      model.add(Dropout(0.5))
      model.add(Dense(3))
      model.add(Activation('softmax'))

      model.compile(optimizer=Adam(lr=.0001), loss= 'categorical_crossentropy', metrics = ['accuracy'])

      history = model.fit_generator(train_batches, steps_per_epoch =training_data_size//batch, validation_data = valid_batches, validation_steps=validation_data_size//batch, epochs=5, verbose=2)
      model.save_weights('Try1.h5')


      I get the 77% validation accuracy after 5 epochs as can be seen in the pic :



      enter image description here



      But when I try to create a confusion matrix for it using I get 35% validation accuracy:



      predictions = model.predict_generator(valid_batches, steps=validation_data_size//batch,verbose=1)
      conf_mat2 = confusion_matrix(valid_batches.classes, np.argmax(predictions,axis=1))






      keras conv-neural-network






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 11 at 15:47









      vaibhav gupta

      11




      11





























          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53250410%2fvalidation-accuracy-shown-during-epochs-much-higher-than-what-i-actually-get%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53250410%2fvalidation-accuracy-shown-during-epochs-much-higher-than-what-i-actually-get%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Florida Star v. B. J. F.

          Danny Elfman

          Lugert, Oklahoma