how to match values in columns by group or within category (groupwise) with other column(having multiple...











up vote
3
down vote

favorite
1












So, I have data table in R which looks like follows:



Claim failure Part code matchcode
23 F1 P1 A B,A,C
23 F1 P1 D B,A,C
23 F2 P2 D B,A,C
23 F2 P2 E B,A,C
45 F1 P4 X Y,Z,X
45 F1 P4 Y Y,Z,X
45 F1 P4 A Y,Z,X
45 F1 P1 F Y,Z,X
45 F1 P1 H Y,Z,X


So the idea here is for every group (claim, failure and part) if 'any' of the code in 'code' matches with list of the codes in 'matchcode' column then than group should have Match column as True.



So expected output should be as following:



Claim failure Part Match 
23 F1 P1 TRUE
23 F2 P2 FALSE
45 F1 P4 TRUE
45 F1 P1 FALSE


The size of this data.table is huge so will be needing a optimized solution.
please help :)










share|improve this question






















  • If you want to vectorize/optimize regex operation, always use the stringi package. That will be by far faster than any alternative (at Ieast I know of). For your purposes I would just do library(stringi) ; DT[, .(Match = any(stri_detect_fixed(matchcode, code))), by = .(Claim, failure, Part)]. And I would also do some searching as vectorizing grepl is something that was discussed many times already
    – David Arenburg
    Nov 11 at 11:20















up vote
3
down vote

favorite
1












So, I have data table in R which looks like follows:



Claim failure Part code matchcode
23 F1 P1 A B,A,C
23 F1 P1 D B,A,C
23 F2 P2 D B,A,C
23 F2 P2 E B,A,C
45 F1 P4 X Y,Z,X
45 F1 P4 Y Y,Z,X
45 F1 P4 A Y,Z,X
45 F1 P1 F Y,Z,X
45 F1 P1 H Y,Z,X


So the idea here is for every group (claim, failure and part) if 'any' of the code in 'code' matches with list of the codes in 'matchcode' column then than group should have Match column as True.



So expected output should be as following:



Claim failure Part Match 
23 F1 P1 TRUE
23 F2 P2 FALSE
45 F1 P4 TRUE
45 F1 P1 FALSE


The size of this data.table is huge so will be needing a optimized solution.
please help :)










share|improve this question






















  • If you want to vectorize/optimize regex operation, always use the stringi package. That will be by far faster than any alternative (at Ieast I know of). For your purposes I would just do library(stringi) ; DT[, .(Match = any(stri_detect_fixed(matchcode, code))), by = .(Claim, failure, Part)]. And I would also do some searching as vectorizing grepl is something that was discussed many times already
    – David Arenburg
    Nov 11 at 11:20













up vote
3
down vote

favorite
1









up vote
3
down vote

favorite
1






1





So, I have data table in R which looks like follows:



Claim failure Part code matchcode
23 F1 P1 A B,A,C
23 F1 P1 D B,A,C
23 F2 P2 D B,A,C
23 F2 P2 E B,A,C
45 F1 P4 X Y,Z,X
45 F1 P4 Y Y,Z,X
45 F1 P4 A Y,Z,X
45 F1 P1 F Y,Z,X
45 F1 P1 H Y,Z,X


So the idea here is for every group (claim, failure and part) if 'any' of the code in 'code' matches with list of the codes in 'matchcode' column then than group should have Match column as True.



So expected output should be as following:



Claim failure Part Match 
23 F1 P1 TRUE
23 F2 P2 FALSE
45 F1 P4 TRUE
45 F1 P1 FALSE


The size of this data.table is huge so will be needing a optimized solution.
please help :)










share|improve this question













So, I have data table in R which looks like follows:



Claim failure Part code matchcode
23 F1 P1 A B,A,C
23 F1 P1 D B,A,C
23 F2 P2 D B,A,C
23 F2 P2 E B,A,C
45 F1 P4 X Y,Z,X
45 F1 P4 Y Y,Z,X
45 F1 P4 A Y,Z,X
45 F1 P1 F Y,Z,X
45 F1 P1 H Y,Z,X


So the idea here is for every group (claim, failure and part) if 'any' of the code in 'code' matches with list of the codes in 'matchcode' column then than group should have Match column as True.



So expected output should be as following:



Claim failure Part Match 
23 F1 P1 TRUE
23 F2 P2 FALSE
45 F1 P4 TRUE
45 F1 P1 FALSE


The size of this data.table is huge so will be needing a optimized solution.
please help :)







r data.table






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Nov 10 at 22:08









Rahul Rajaram

225




225












  • If you want to vectorize/optimize regex operation, always use the stringi package. That will be by far faster than any alternative (at Ieast I know of). For your purposes I would just do library(stringi) ; DT[, .(Match = any(stri_detect_fixed(matchcode, code))), by = .(Claim, failure, Part)]. And I would also do some searching as vectorizing grepl is something that was discussed many times already
    – David Arenburg
    Nov 11 at 11:20


















  • If you want to vectorize/optimize regex operation, always use the stringi package. That will be by far faster than any alternative (at Ieast I know of). For your purposes I would just do library(stringi) ; DT[, .(Match = any(stri_detect_fixed(matchcode, code))), by = .(Claim, failure, Part)]. And I would also do some searching as vectorizing grepl is something that was discussed many times already
    – David Arenburg
    Nov 11 at 11:20
















If you want to vectorize/optimize regex operation, always use the stringi package. That will be by far faster than any alternative (at Ieast I know of). For your purposes I would just do library(stringi) ; DT[, .(Match = any(stri_detect_fixed(matchcode, code))), by = .(Claim, failure, Part)]. And I would also do some searching as vectorizing grepl is something that was discussed many times already
– David Arenburg
Nov 11 at 11:20




If you want to vectorize/optimize regex operation, always use the stringi package. That will be by far faster than any alternative (at Ieast I know of). For your purposes I would just do library(stringi) ; DT[, .(Match = any(stri_detect_fixed(matchcode, code))), by = .(Claim, failure, Part)]. And I would also do some searching as vectorizing grepl is something that was discussed many times already
– David Arenburg
Nov 11 at 11:20












3 Answers
3






active

oldest

votes

















up vote
3
down vote



accepted










... and a solution using data.table.



library(data.table)
grepl_v <- Vectorize(grepl)
DT[, .(Match = any(grepl_v(code, matchcode))), by = .(Claim, failure, Part)]
# Claim failure Part Match
#1: 23 F1 P1 TRUE
#2: 23 F2 P2 FALSE
#3: 45 F1 P4 TRUE
#4: 45 F1 P1 FALSE


data



DT <- fread("Claim failure Part code matchcode
23 F1 P1 A B,A,C
23 F1 P1 D B,A,C
23 F2 P2 D B,A,C
23 F2 P2 E B,A,C
45 F1 P4 X Y,Z,X
45 F1 P4 Y Y,Z,X
45 F1 P4 A Y,Z,X
45 F1 P1 F Y,Z,X
45 F1 P1 H Y,Z,X")





share|improve this answer






























    up vote
    1
    down vote













    Here is a dplyr solution.



    library(dplyr)

    dat %>%
    rowwise() %>%
    mutate(Match = grepl(code, matchcode)) %>%
    group_by(Claim, failure, Part) %>%
    mutate(Match = any(Match)) %>%
    select(-code, -matchcode) %>%
    unique
    ## A tibble: 4 x 4
    ## Groups: Claim, failure, Part [4]
    # Claim failure Part Match
    # <int> <fct> <fct> <lgl>
    #1 23 F1 P1 TRUE
    #2 23 F2 P2 FALSE
    #3 45 F1 P4 TRUE
    #4 45 F1 P1 FALSE
    #Warning message:
    #Grouping rowwise data frame strips rowwise nature


    Don't worry about the warning, it simply tells you that after grep'ing rowwise, the pipe groups by certain variables and therefore the processing is no longer row by row.



    Data.



    dat <- read.table(text = "
    Claim failure Part code matchcode
    23 F1 P1 A B,A,C
    23 F1 P1 D B,A,C
    23 F2 P2 D B,A,C
    23 F2 P2 E B,A,C
    45 F1 P4 X Y,Z,X
    45 F1 P4 Y Y,Z,X
    45 F1 P4 A Y,Z,X
    45 F1 P1 F Y,Z,X
    45 F1 P1 H Y,Z,X
    ", header = TRUE)





    share|improve this answer




























      up vote
      1
      down vote













      base solution:



      d$match <- apply(d, 1, function(x) { return(grepl(x[['code']], x['matchcode']))})

      # Claim failure Part code matchcode match
      # 1 23 F1 P1 A B,A,C 1
      # 2 23 F1 P1 D B,A,C 0
      # 3 23 F2 P2 D B,A,C 0
      # 4 23 F2 P2 E B,A,C 0
      # 5 45 F1 P4 X Y,Z,X 1
      # 6 45 F1 P4 Y Y,Z,X 1
      # 7 45 F1 P4 A Y,Z,X 0
      # 8 45 F1 P1 F Y,Z,X 0
      # 9 45 F1 P1 H Y,Z,X 0


      Original version of this answer used grep(); thanks to markus for suggesting grepl()






      share|improve this answer























        Your Answer






        StackExchange.ifUsing("editor", function () {
        StackExchange.using("externalEditor", function () {
        StackExchange.using("snippets", function () {
        StackExchange.snippets.init();
        });
        });
        }, "code-snippets");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "1"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














         

        draft saved


        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53243908%2fhow-to-match-values-in-columns-by-group-or-within-category-groupwise-with-othe%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes








        up vote
        3
        down vote



        accepted










        ... and a solution using data.table.



        library(data.table)
        grepl_v <- Vectorize(grepl)
        DT[, .(Match = any(grepl_v(code, matchcode))), by = .(Claim, failure, Part)]
        # Claim failure Part Match
        #1: 23 F1 P1 TRUE
        #2: 23 F2 P2 FALSE
        #3: 45 F1 P4 TRUE
        #4: 45 F1 P1 FALSE


        data



        DT <- fread("Claim failure Part code matchcode
        23 F1 P1 A B,A,C
        23 F1 P1 D B,A,C
        23 F2 P2 D B,A,C
        23 F2 P2 E B,A,C
        45 F1 P4 X Y,Z,X
        45 F1 P4 Y Y,Z,X
        45 F1 P4 A Y,Z,X
        45 F1 P1 F Y,Z,X
        45 F1 P1 H Y,Z,X")





        share|improve this answer



























          up vote
          3
          down vote



          accepted










          ... and a solution using data.table.



          library(data.table)
          grepl_v <- Vectorize(grepl)
          DT[, .(Match = any(grepl_v(code, matchcode))), by = .(Claim, failure, Part)]
          # Claim failure Part Match
          #1: 23 F1 P1 TRUE
          #2: 23 F2 P2 FALSE
          #3: 45 F1 P4 TRUE
          #4: 45 F1 P1 FALSE


          data



          DT <- fread("Claim failure Part code matchcode
          23 F1 P1 A B,A,C
          23 F1 P1 D B,A,C
          23 F2 P2 D B,A,C
          23 F2 P2 E B,A,C
          45 F1 P4 X Y,Z,X
          45 F1 P4 Y Y,Z,X
          45 F1 P4 A Y,Z,X
          45 F1 P1 F Y,Z,X
          45 F1 P1 H Y,Z,X")





          share|improve this answer

























            up vote
            3
            down vote



            accepted







            up vote
            3
            down vote



            accepted






            ... and a solution using data.table.



            library(data.table)
            grepl_v <- Vectorize(grepl)
            DT[, .(Match = any(grepl_v(code, matchcode))), by = .(Claim, failure, Part)]
            # Claim failure Part Match
            #1: 23 F1 P1 TRUE
            #2: 23 F2 P2 FALSE
            #3: 45 F1 P4 TRUE
            #4: 45 F1 P1 FALSE


            data



            DT <- fread("Claim failure Part code matchcode
            23 F1 P1 A B,A,C
            23 F1 P1 D B,A,C
            23 F2 P2 D B,A,C
            23 F2 P2 E B,A,C
            45 F1 P4 X Y,Z,X
            45 F1 P4 Y Y,Z,X
            45 F1 P4 A Y,Z,X
            45 F1 P1 F Y,Z,X
            45 F1 P1 H Y,Z,X")





            share|improve this answer














            ... and a solution using data.table.



            library(data.table)
            grepl_v <- Vectorize(grepl)
            DT[, .(Match = any(grepl_v(code, matchcode))), by = .(Claim, failure, Part)]
            # Claim failure Part Match
            #1: 23 F1 P1 TRUE
            #2: 23 F2 P2 FALSE
            #3: 45 F1 P4 TRUE
            #4: 45 F1 P1 FALSE


            data



            DT <- fread("Claim failure Part code matchcode
            23 F1 P1 A B,A,C
            23 F1 P1 D B,A,C
            23 F2 P2 D B,A,C
            23 F2 P2 E B,A,C
            45 F1 P4 X Y,Z,X
            45 F1 P4 Y Y,Z,X
            45 F1 P4 A Y,Z,X
            45 F1 P1 F Y,Z,X
            45 F1 P1 H Y,Z,X")






            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited Nov 10 at 22:43

























            answered Nov 10 at 22:30









            markus

            8,465928




            8,465928
























                up vote
                1
                down vote













                Here is a dplyr solution.



                library(dplyr)

                dat %>%
                rowwise() %>%
                mutate(Match = grepl(code, matchcode)) %>%
                group_by(Claim, failure, Part) %>%
                mutate(Match = any(Match)) %>%
                select(-code, -matchcode) %>%
                unique
                ## A tibble: 4 x 4
                ## Groups: Claim, failure, Part [4]
                # Claim failure Part Match
                # <int> <fct> <fct> <lgl>
                #1 23 F1 P1 TRUE
                #2 23 F2 P2 FALSE
                #3 45 F1 P4 TRUE
                #4 45 F1 P1 FALSE
                #Warning message:
                #Grouping rowwise data frame strips rowwise nature


                Don't worry about the warning, it simply tells you that after grep'ing rowwise, the pipe groups by certain variables and therefore the processing is no longer row by row.



                Data.



                dat <- read.table(text = "
                Claim failure Part code matchcode
                23 F1 P1 A B,A,C
                23 F1 P1 D B,A,C
                23 F2 P2 D B,A,C
                23 F2 P2 E B,A,C
                45 F1 P4 X Y,Z,X
                45 F1 P4 Y Y,Z,X
                45 F1 P4 A Y,Z,X
                45 F1 P1 F Y,Z,X
                45 F1 P1 H Y,Z,X
                ", header = TRUE)





                share|improve this answer

























                  up vote
                  1
                  down vote













                  Here is a dplyr solution.



                  library(dplyr)

                  dat %>%
                  rowwise() %>%
                  mutate(Match = grepl(code, matchcode)) %>%
                  group_by(Claim, failure, Part) %>%
                  mutate(Match = any(Match)) %>%
                  select(-code, -matchcode) %>%
                  unique
                  ## A tibble: 4 x 4
                  ## Groups: Claim, failure, Part [4]
                  # Claim failure Part Match
                  # <int> <fct> <fct> <lgl>
                  #1 23 F1 P1 TRUE
                  #2 23 F2 P2 FALSE
                  #3 45 F1 P4 TRUE
                  #4 45 F1 P1 FALSE
                  #Warning message:
                  #Grouping rowwise data frame strips rowwise nature


                  Don't worry about the warning, it simply tells you that after grep'ing rowwise, the pipe groups by certain variables and therefore the processing is no longer row by row.



                  Data.



                  dat <- read.table(text = "
                  Claim failure Part code matchcode
                  23 F1 P1 A B,A,C
                  23 F1 P1 D B,A,C
                  23 F2 P2 D B,A,C
                  23 F2 P2 E B,A,C
                  45 F1 P4 X Y,Z,X
                  45 F1 P4 Y Y,Z,X
                  45 F1 P4 A Y,Z,X
                  45 F1 P1 F Y,Z,X
                  45 F1 P1 H Y,Z,X
                  ", header = TRUE)





                  share|improve this answer























                    up vote
                    1
                    down vote










                    up vote
                    1
                    down vote









                    Here is a dplyr solution.



                    library(dplyr)

                    dat %>%
                    rowwise() %>%
                    mutate(Match = grepl(code, matchcode)) %>%
                    group_by(Claim, failure, Part) %>%
                    mutate(Match = any(Match)) %>%
                    select(-code, -matchcode) %>%
                    unique
                    ## A tibble: 4 x 4
                    ## Groups: Claim, failure, Part [4]
                    # Claim failure Part Match
                    # <int> <fct> <fct> <lgl>
                    #1 23 F1 P1 TRUE
                    #2 23 F2 P2 FALSE
                    #3 45 F1 P4 TRUE
                    #4 45 F1 P1 FALSE
                    #Warning message:
                    #Grouping rowwise data frame strips rowwise nature


                    Don't worry about the warning, it simply tells you that after grep'ing rowwise, the pipe groups by certain variables and therefore the processing is no longer row by row.



                    Data.



                    dat <- read.table(text = "
                    Claim failure Part code matchcode
                    23 F1 P1 A B,A,C
                    23 F1 P1 D B,A,C
                    23 F2 P2 D B,A,C
                    23 F2 P2 E B,A,C
                    45 F1 P4 X Y,Z,X
                    45 F1 P4 Y Y,Z,X
                    45 F1 P4 A Y,Z,X
                    45 F1 P1 F Y,Z,X
                    45 F1 P1 H Y,Z,X
                    ", header = TRUE)





                    share|improve this answer












                    Here is a dplyr solution.



                    library(dplyr)

                    dat %>%
                    rowwise() %>%
                    mutate(Match = grepl(code, matchcode)) %>%
                    group_by(Claim, failure, Part) %>%
                    mutate(Match = any(Match)) %>%
                    select(-code, -matchcode) %>%
                    unique
                    ## A tibble: 4 x 4
                    ## Groups: Claim, failure, Part [4]
                    # Claim failure Part Match
                    # <int> <fct> <fct> <lgl>
                    #1 23 F1 P1 TRUE
                    #2 23 F2 P2 FALSE
                    #3 45 F1 P4 TRUE
                    #4 45 F1 P1 FALSE
                    #Warning message:
                    #Grouping rowwise data frame strips rowwise nature


                    Don't worry about the warning, it simply tells you that after grep'ing rowwise, the pipe groups by certain variables and therefore the processing is no longer row by row.



                    Data.



                    dat <- read.table(text = "
                    Claim failure Part code matchcode
                    23 F1 P1 A B,A,C
                    23 F1 P1 D B,A,C
                    23 F2 P2 D B,A,C
                    23 F2 P2 E B,A,C
                    45 F1 P4 X Y,Z,X
                    45 F1 P4 Y Y,Z,X
                    45 F1 P4 A Y,Z,X
                    45 F1 P1 F Y,Z,X
                    45 F1 P1 H Y,Z,X
                    ", header = TRUE)






                    share|improve this answer












                    share|improve this answer



                    share|improve this answer










                    answered Nov 10 at 22:26









                    Rui Barradas

                    14.7k31730




                    14.7k31730






















                        up vote
                        1
                        down vote













                        base solution:



                        d$match <- apply(d, 1, function(x) { return(grepl(x[['code']], x['matchcode']))})

                        # Claim failure Part code matchcode match
                        # 1 23 F1 P1 A B,A,C 1
                        # 2 23 F1 P1 D B,A,C 0
                        # 3 23 F2 P2 D B,A,C 0
                        # 4 23 F2 P2 E B,A,C 0
                        # 5 45 F1 P4 X Y,Z,X 1
                        # 6 45 F1 P4 Y Y,Z,X 1
                        # 7 45 F1 P4 A Y,Z,X 0
                        # 8 45 F1 P1 F Y,Z,X 0
                        # 9 45 F1 P1 H Y,Z,X 0


                        Original version of this answer used grep(); thanks to markus for suggesting grepl()






                        share|improve this answer



























                          up vote
                          1
                          down vote













                          base solution:



                          d$match <- apply(d, 1, function(x) { return(grepl(x[['code']], x['matchcode']))})

                          # Claim failure Part code matchcode match
                          # 1 23 F1 P1 A B,A,C 1
                          # 2 23 F1 P1 D B,A,C 0
                          # 3 23 F2 P2 D B,A,C 0
                          # 4 23 F2 P2 E B,A,C 0
                          # 5 45 F1 P4 X Y,Z,X 1
                          # 6 45 F1 P4 Y Y,Z,X 1
                          # 7 45 F1 P4 A Y,Z,X 0
                          # 8 45 F1 P1 F Y,Z,X 0
                          # 9 45 F1 P1 H Y,Z,X 0


                          Original version of this answer used grep(); thanks to markus for suggesting grepl()






                          share|improve this answer

























                            up vote
                            1
                            down vote










                            up vote
                            1
                            down vote









                            base solution:



                            d$match <- apply(d, 1, function(x) { return(grepl(x[['code']], x['matchcode']))})

                            # Claim failure Part code matchcode match
                            # 1 23 F1 P1 A B,A,C 1
                            # 2 23 F1 P1 D B,A,C 0
                            # 3 23 F2 P2 D B,A,C 0
                            # 4 23 F2 P2 E B,A,C 0
                            # 5 45 F1 P4 X Y,Z,X 1
                            # 6 45 F1 P4 Y Y,Z,X 1
                            # 7 45 F1 P4 A Y,Z,X 0
                            # 8 45 F1 P1 F Y,Z,X 0
                            # 9 45 F1 P1 H Y,Z,X 0


                            Original version of this answer used grep(); thanks to markus for suggesting grepl()






                            share|improve this answer














                            base solution:



                            d$match <- apply(d, 1, function(x) { return(grepl(x[['code']], x['matchcode']))})

                            # Claim failure Part code matchcode match
                            # 1 23 F1 P1 A B,A,C 1
                            # 2 23 F1 P1 D B,A,C 0
                            # 3 23 F2 P2 D B,A,C 0
                            # 4 23 F2 P2 E B,A,C 0
                            # 5 45 F1 P4 X Y,Z,X 1
                            # 6 45 F1 P4 Y Y,Z,X 1
                            # 7 45 F1 P4 A Y,Z,X 0
                            # 8 45 F1 P1 F Y,Z,X 0
                            # 9 45 F1 P1 H Y,Z,X 0


                            Original version of this answer used grep(); thanks to markus for suggesting grepl()







                            share|improve this answer














                            share|improve this answer



                            share|improve this answer








                            edited Nov 10 at 22:32

























                            answered Nov 10 at 22:27









                            12b345b6b78

                            571115




                            571115






























                                 

                                draft saved


                                draft discarded



















































                                 


                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53243908%2fhow-to-match-values-in-columns-by-group-or-within-category-groupwise-with-othe%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Florida Star v. B. J. F.

                                Danny Elfman

                                Lugert, Oklahoma