When use Dataset API, got device placement error with tensorflow >= 1.11
My script used dataset API to realize input pipeline. When I use tensorflow 1.10, everything is ok, but when I upgrade to tensorflow 1.11 or 1.12. I got the following error message at the beginning of training:
Attempted create an iterator on device "/job:localhost/replica:0/task:0/device:GPU:0" from handle defined on device "/job:localhost/replica:0/task:0/device:CPU:0"
Here are piece of my code:
def build_all_dataset(self):
self.build_dataset(ROUTE_TRAIN)
self.build_dataset(ROUTE_VALIDATION)
self.build_dataset(ROUTE_TEST)
def build_dataset(self, p_route):
# Create dataset instance.
# ......
# ......
self.dataset[p_route] = dataset
self.iterators[p_route] = dataset.make_initializable_iterator()
self.handles[p_route] = (self.iterators[p_route].string_handle()).eval()
def build_model(self):
with tf.device("/GPU:0"):
# Build dataset for training/validation/test.
self.build_all_dataset()
self.ph_dataset_handle = tf.placeholder(tf.string, shape=)
iterator = tf.data.Iterator.from_string_handle(self.ph_dataset_handle, self.dataset[ROUTE_TRAIN].output_types,
self.dataset[ROUTE_TRAIN].output_shapes)
xxx, xxx, xxx = iterator.get_next()
# Build the following graph.
# ......
# ......
while True:
try:
session.run(xxx, {self.ph_dataset_handle: self.handles[ROUTE_TRAIN]})
except tf.errors.OutOfRangeError:
break
I checked that the placeholder "self.ph_dataset_handle" is placed on /GPU:0, why tensorflow said "handle defined on device"/job:localhost/replica:0/task:0/device:CPU:0"?
Could you please give any insight? Thanks!
python tensorflow tensorflow-datasets
add a comment |
My script used dataset API to realize input pipeline. When I use tensorflow 1.10, everything is ok, but when I upgrade to tensorflow 1.11 or 1.12. I got the following error message at the beginning of training:
Attempted create an iterator on device "/job:localhost/replica:0/task:0/device:GPU:0" from handle defined on device "/job:localhost/replica:0/task:0/device:CPU:0"
Here are piece of my code:
def build_all_dataset(self):
self.build_dataset(ROUTE_TRAIN)
self.build_dataset(ROUTE_VALIDATION)
self.build_dataset(ROUTE_TEST)
def build_dataset(self, p_route):
# Create dataset instance.
# ......
# ......
self.dataset[p_route] = dataset
self.iterators[p_route] = dataset.make_initializable_iterator()
self.handles[p_route] = (self.iterators[p_route].string_handle()).eval()
def build_model(self):
with tf.device("/GPU:0"):
# Build dataset for training/validation/test.
self.build_all_dataset()
self.ph_dataset_handle = tf.placeholder(tf.string, shape=)
iterator = tf.data.Iterator.from_string_handle(self.ph_dataset_handle, self.dataset[ROUTE_TRAIN].output_types,
self.dataset[ROUTE_TRAIN].output_shapes)
xxx, xxx, xxx = iterator.get_next()
# Build the following graph.
# ......
# ......
while True:
try:
session.run(xxx, {self.ph_dataset_handle: self.handles[ROUTE_TRAIN]})
except tf.errors.OutOfRangeError:
break
I checked that the placeholder "self.ph_dataset_handle" is placed on /GPU:0, why tensorflow said "handle defined on device"/job:localhost/replica:0/task:0/device:CPU:0"?
Could you please give any insight? Thanks!
python tensorflow tensorflow-datasets
add a comment |
My script used dataset API to realize input pipeline. When I use tensorflow 1.10, everything is ok, but when I upgrade to tensorflow 1.11 or 1.12. I got the following error message at the beginning of training:
Attempted create an iterator on device "/job:localhost/replica:0/task:0/device:GPU:0" from handle defined on device "/job:localhost/replica:0/task:0/device:CPU:0"
Here are piece of my code:
def build_all_dataset(self):
self.build_dataset(ROUTE_TRAIN)
self.build_dataset(ROUTE_VALIDATION)
self.build_dataset(ROUTE_TEST)
def build_dataset(self, p_route):
# Create dataset instance.
# ......
# ......
self.dataset[p_route] = dataset
self.iterators[p_route] = dataset.make_initializable_iterator()
self.handles[p_route] = (self.iterators[p_route].string_handle()).eval()
def build_model(self):
with tf.device("/GPU:0"):
# Build dataset for training/validation/test.
self.build_all_dataset()
self.ph_dataset_handle = tf.placeholder(tf.string, shape=)
iterator = tf.data.Iterator.from_string_handle(self.ph_dataset_handle, self.dataset[ROUTE_TRAIN].output_types,
self.dataset[ROUTE_TRAIN].output_shapes)
xxx, xxx, xxx = iterator.get_next()
# Build the following graph.
# ......
# ......
while True:
try:
session.run(xxx, {self.ph_dataset_handle: self.handles[ROUTE_TRAIN]})
except tf.errors.OutOfRangeError:
break
I checked that the placeholder "self.ph_dataset_handle" is placed on /GPU:0, why tensorflow said "handle defined on device"/job:localhost/replica:0/task:0/device:CPU:0"?
Could you please give any insight? Thanks!
python tensorflow tensorflow-datasets
My script used dataset API to realize input pipeline. When I use tensorflow 1.10, everything is ok, but when I upgrade to tensorflow 1.11 or 1.12. I got the following error message at the beginning of training:
Attempted create an iterator on device "/job:localhost/replica:0/task:0/device:GPU:0" from handle defined on device "/job:localhost/replica:0/task:0/device:CPU:0"
Here are piece of my code:
def build_all_dataset(self):
self.build_dataset(ROUTE_TRAIN)
self.build_dataset(ROUTE_VALIDATION)
self.build_dataset(ROUTE_TEST)
def build_dataset(self, p_route):
# Create dataset instance.
# ......
# ......
self.dataset[p_route] = dataset
self.iterators[p_route] = dataset.make_initializable_iterator()
self.handles[p_route] = (self.iterators[p_route].string_handle()).eval()
def build_model(self):
with tf.device("/GPU:0"):
# Build dataset for training/validation/test.
self.build_all_dataset()
self.ph_dataset_handle = tf.placeholder(tf.string, shape=)
iterator = tf.data.Iterator.from_string_handle(self.ph_dataset_handle, self.dataset[ROUTE_TRAIN].output_types,
self.dataset[ROUTE_TRAIN].output_shapes)
xxx, xxx, xxx = iterator.get_next()
# Build the following graph.
# ......
# ......
while True:
try:
session.run(xxx, {self.ph_dataset_handle: self.handles[ROUTE_TRAIN]})
except tf.errors.OutOfRangeError:
break
I checked that the placeholder "self.ph_dataset_handle" is placed on /GPU:0, why tensorflow said "handle defined on device"/job:localhost/replica:0/task:0/device:CPU:0"?
Could you please give any insight? Thanks!
python tensorflow tensorflow-datasets
python tensorflow tensorflow-datasets
asked Nov 14 '18 at 7:44
ShuaiShuai
63
63
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53295253%2fwhen-use-dataset-api-got-device-placement-error-with-tensorflow-1-11%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53295253%2fwhen-use-dataset-api-got-device-placement-error-with-tensorflow-1-11%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown